
CHAPTER 1

Euclidean geometry

1.1. Distance in Rn

We work in n-dimensional Euclidean space, Rn. Points in Rn are represented
in coordinates as x “ px1, . . . , xnq, where x1, . . . , xn are real numbers, and adding
subscripts to a point in Rn will always represent its coordinates. Although we will
only really care about n “ 2, 3, it makes sense to develop the theory in general.
One of the major themes of this course will be the notion of ‘distance’. In R2, a

formula for the distance between two points comes from the Pythagorean theorem.

Theorem 1.1.1 (Pythagoras). If a right triangle has side lengths a, b, c, where c is
the hypotenuse, then a2 ` b2 “ c2.

Accordingly, the distance dpp, qq between points p, q P R2 should be

dpp, qq “
a

pp1 ´ q1q2 ` pp2 ´ q2q2,

applying the Pythagorean theorem to the right triangle with vertices p, q and pq1, p2q.
There are a huge number of proofs of the Pythagorean theorem; here is a beautiful
geometric proof that is usually attributed to Chinese antiquity.

Proof. Draw a square with side lengths a ` b, and four enclosed triangles:
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The area of the blue region is c2. Rotating two of the triangles changes the blue region
into a union of two rectangles, with areas a2 and b2. Thus c2 “ a2 ` b2. □

The distance between two points in Rn can be calculated inductively by the same
means. We claim that if p, q P Rn, then

dpp, qq “
a

pp1 ´ q1q2 ` ¨ ¨ ¨ ` ppn ´ qnq2.
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Assuming that the analogous formula holds in Rn´1, suppose that p, q P Rn. The
plane defined by fixing the last coordinate in Rn to be pn is a copy of Rn´1, so

d
`

p, pq1, . . . , qn´1, pnq
˘

“
a

pp1 ´ q1q2 ` ¨ ¨ ¨ ` ppn´1 ´ qn´1q2,

There is a right triangle with vertices p, q and pq1, . . . , qn´1, pnq, as pictured below,
and the Pythagorean theorem gives the formula for dpp, qq described above.

|pn � qn|

p
(p1 � q1)2 + . . .+ (pn�1 � qn�1)2, by induction

p
(p1 � q1)2 + . . .+ (pn � qn)2, by Pythagorus

q

p

(q1, . . . .qn�1, pn)

The distance formula is best understood with the assistance of a tool from multi-
variable calculus. Recall that if v, w P Rn, their dot product is the real number

v ¨ w “ v1w2 ` ¨ ¨ ¨ ` vnwn

Proposition 1.1.2. For v, w, u P Rn, the dot product satisfies the following prop-
erties:

‚ (Commutativity) v ¨ w “ w ¨ v,
‚ (Distributivity) v ¨ pw ` uq “ v ¨ w ` v ¨ u,
‚ (Scalars come out) v ¨ prwq “ rpv ¨ wq, for r P R.

Proof. Exercise, using the analogous properties of arithmetic of real numbers.
□

Note that using commutativity, one can also distribute the dot product over an
addition or extract a scalar from the first input, not just the second.
Using the dot product, we may define the length of a vector v P Rn by

|v| “
?
v ¨ v

Note that |v| is exactly the distance from the origin to the head of v, so length is
compatible with our definition of distance from before. Furthermore, we have

dpv, wq “ |v ´ w|, @v, w P Rn.

The dot product has an important geometric interpretation.

Theorem 1.1.3. If the angle between two vectors v, w P Rn is θ, then v ¨ w “
|v||w| cos θ.

In particular, v ¨ w “ 0 if and only if v, w are perpendicular.
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Proof. Let us temporarily write v ‹ w “ |v||w| cos θ, so that the theorem claims
that ‹ is the same as the dot product. If e1 “ p1, 0, . . . , 0q, . . . , en “ p0, . . . , 0, 1q, then

ei ‹ ej “ ei ¨ ej “

#

1 i “ j

0 i ‰ j
(1)

For any two distinct such vectors are perpendicular, so the cosines of their angles
vanish, while a quick computation shows that their dot products also vanish.
Now, observe that ‹ satisfies the three properties of Proposition 1.1.2. Commuta-

tivity is easy, since as cos is an even function,

|v| |w| cos θ “ |w| |v| cosp´θq.

Scalars come out of ‹ since

|v| |rw| cospθq “ |v|
a

prwq ¨ prwq cospθq “ r|v|
?
w ¨ w cospθq “ r|v| |w| cospθq,

so the point is to prove the distributive law, which we leave as an exercise. Assuming
this, we then compute

v ‹ w “

˜

ÿ

i

viei

¸

‹

˜

ÿ

j

wjej

¸

“
ÿ

i,j

pvieiq ‹ pwjejq, by distributivity,

“
ÿ

i,j

viwjei ‹ ej, by pulling out scalars,

“
ÿ

i

viwi, by Equation (1),

“ v ¨ w. □
Exercise 1.1.4. If v P Rn, define a map projv : Rn ÝÑ Rn by

projvpwq “ w ¨ v
v

|v|2
.

Show that w´projvpwq is perpendicular to v. Then show that projvpwq is the closest
point to w on the line ttv | t P Ru. Hint: use the Pythagorean theorem.

Corollary 1.1.5 (Law of cosines). Suppose that a triangle has side lengths a, b, c
and that the angle opposite c is θ. Then c2 “ a2 ` b2 ´ 2ab cos θ.

Note: ‘side length’ here just means the distance between the endpoints.

Proof. Regard the sides of the triangle as vectors a, b, c as pictured in Figure 1,
so that what we want to prove is |c|2 “ |a|2 ` |b|2 ´ 2|a| |b| cos θ. Then c “ a ´ b, so

|c|2 “ c ¨ c “ pa ´ bq ¨ pa ´ bq “ a ¨ a ´ 2a ¨ b ` b ¨ b “ |a|2 ` |b|2 ´ 2 |a| |b| cos θ. □
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a

b

c

Figure 1. The triangle in the law of cosines.

Corollary 1.1.6 (The triangle inequality). Suppose that p, q, z P Rn. Then

dpp, zq ď dpp, qq ` dpq, zq,

with equality if and only if p, q, z are collinear, with q between p, z.

Proof. Let θ be the angle at q in the triangle pqz. By the law of cosines,

dpp, zq2 “ dpp, qq2 ` dpq, zq2 ´ 2dpp, qqdpq, zq cos θ

ď dpp, qq2 ` dpq, zq2 ` 2dpp, qqdpq, zq, since cos θ ě ´1

“ pdpp, qq ` dpq, zqq2 ,

so taking square roots gives the triangle inequality. Furthermore, we have equality
above if and only if cos θ “ ´1, in which case θ “ π. This means exactly that q lies
on the line segment between p and z. □
Definition 1.1.7. If X is a set, a metric on X is a function d : X ˆX ÝÑ R that

satisfies, for all p, q, z P X, the following three properties:

(a) dpp, qq ě 0, with dpp, qq “ 0 if and only if p “ q,
(b) dpp, qq “ dpq, pq,
(c) dpp, zq ď dpp, qq ` dpq, zq.

Proposition 1.1.8. dpp, qq “
a

pp1 ´ q1q2 ` ¨ ¨ ¨ ` ppn ´ qnq2 defines a metric on
Rn.

Proof. The triangle inequality is proved above. For the first property,

dpp, qq “ pp1 ´ q1q2 ` . . . ` ppn ´ qnq2

is a sum of nonnegative numbers. It is therefore nonnegative, and is zero exactly
when all of the terms are zero, i.e. when p “ q. The second property is obvious and
the third is the triangle inequality, which we proved above. □
The three properties defining a metric are a minimum that one might require in

order to make d behave like our usual notion of distance. There are a number of other
metrics on Rn, for instance

dmaxpp, qq “ maxt|p1 ´ q1|, ¨ ¨ ¨ , |pn ´ qn|u,

dsumpp, qq “ |p1 ´ q1| ` ¨ ¨ ¨ ` |pn ´ qn|.
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Exercise 1.1.9. Verify the three metric properties for dmax.

Some of these can really be viewed as physical distance functions, in some sense.
For example, in R2 the metric dsumpp, qq “ |p1 ´ q1| ` |p2 ´ q2| is called Manhattan
distance – the distance between two points is the sum of the horizontal and vertical
distance, which is how far one must travel if one is constrained to roads and cannot
cut diagonally. A more abstract example of a metric is the discrete metric on (any)
set X, in which the distance between two distinct points p, q P X is always 1.

Exercise 1.1.10. If v, w P R2, the determinant of the 2 ˆ 2 matrix pv wq is

det

ˆ

v1 w1

v2 w2

˙

“ v1w2 ´ w1v2.

Note that v1w2 ´w1v2 “ vK ¨w, where vK “ p´v2, v1q. The vector vK is obtained from
v by rotating π{2 counterclockwise; to see this, note that v ¨ vK “ 0, so they make a
right angle, and by inspection one can just check that the angle from v to vK is π{2
counterclockwise rather than clockwise.

(a) Mention why the counterclockwise angle from v to w is between 0 and π if
and only if detpv wq ě 0.

(b) The area of a parallelogram is the length of its base times its height. Show
that if v, w P R2, the area of the parallelogram spanned by v, w is | detpv wq|.

v=base

w height

Exercise 1.1.11 (SSS). Show that if two triangles have all the same side lengths,
they have all the same interior angles as well.

Exercise 1.1.12 (SSA). Show that if two triangles both have two sides of lengths
a and b that meet angle θ, then the remaining sides have the same length as well.

1.2. Isometries, especially of R2

A recurring theme in this course will be the study of ‘rigid motions’. Formally, an
isometry of a metric space X is a bijection f : X ÝÑ X that preserves distances:

dpfpxq, fpyqq “ dpx, yq, @x, y P X.

Exercise 1.2.1 (Isometries form a group). Show that the identity map id : X ÝÑ
X is always an isometry, that the composition of two isometries is an isometry, and
that the inverse of an isometry is an isometry.
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In this section, we will mostly be interested in isometries of R2.

Definition 1.2.2 (Translations). If v P R2, the translation by v is the map

Tv : R2 ÝÑ R2, Tvpxq “ x ` v.

Translations are bijections, as T´1
v “ T´v. They also preserve distances, as

dpTvpxq, Tvpyqq “ |x ` v ´ py ` vq| “ |x ´ y| “ dpx, yq,

and therefore are isometries. One should imagine a translation as rigidly shifting the
plane R2 in the direction indicated by v.

Definition 1.2.3 (Rotations). If p P R2 and θ P r0, 2πq, the rotation around p by
angle θ is defined to be the map

Op,θ : R2 ÝÑ R2,

such that Op,θppq “ p, and otherwise Op,θpxq is the unique point such that

dpp, xq “ dpp,Op,θpxqq

and the angle from px to pOp,θpxq is θ.

Exercise 1.2.4. Using the law of cosines, show that rotations are isometries.

Rotations around the origin can be expressed in coordinates as follows: representing
points in R2 as column vectors we have

O0,θ

ˆ

x1

x2

˙

“

ˆ

cos θ ´ sin θ
sin θ cos θ

˙ ˆ

x1

x2

˙

“

ˆ

x1 cos θ ´ x2 sin θ
x1 sin θ ` x2 cos θ

˙

.

To see why this is true, first note that

d p0, O0,θpxqq “

ˇ

ˇ

ˇ

ˇ

ˆ

x1 cos θ ´ x2 sin θ
x1 sin θ ` x2 cos θ

˙ˇ

ˇ

ˇ

ˇ

“
a

px1 cos θ ´ x2 sin θq2 ` px1 sin θ ` x2 cos θq2

“
b

px2
1 ` x2

2q cos2 θ ` px2
1 ` x2

2q sin2 θ

“
b

x2
1 ` x2

2

“ d p0, xq .

Next, we compute the angle ψ between the vectors x and Op,θpxq using Theorem
1.1.3:

cosψ “
x ¨ Op,θpxq

|x| |Op,θpxq|

“
x1px1 cos θ ´ x2 sin θq ` x2px1 sin θ ` x2 cos θq

a

x2
1 ` x2

2

a

x2
1 ` x2

2

“ cos θ.



1.2. ISOMETRIES, ESPECIALLY OF R2 7

Therefore, ψ “ ˘θ.

Exercise 1.2.5. Show that ψ “ θ. (Use Exercise 1.1.10).

Here is a cool application of this description in coordinates of rotations. Geometri-
cally, it is clear that rotating around 0 first by angle θ, then by angle ψ gives a rotation
by angle θ ` ψ. However, we can also compute the composition in coordinates. As
function composition is just matrix multiplication, we compute:

`

cos θ ´ sin θ
sin θ cos θ

˘ `

cosψ ´ sinψ
sinψ cosψ

˘

“
`

cos θ cosψ´sin θ sinψ ´ cos θ sinψ´sin θ cosψ
sin θ cosψ`cos θ sinψ cos θ cosψ´sin θ sinψ

˘

As this must be equal to the rotation matrix by angle θ ` ψ, we have:

sinpθ ` ψq “ sin θ cosψ ` cos θ sinψ

cospθ ` ψq “ cos θ cosψ ´ sin θ sinψ,

so this gives a proof of the angle sum formulas for cos and sin!
So, how can we find coordinate descriptions for rotations that are not around the

origin? For this, we use the convenient identity

Op,θ “ Tp ˝ O0,θ ˝ T´p, (2)

which implies that

Op,θpxq “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

px ´ pq ` p.

Exercise 1.2.6. Draw a picture, and prove that (2) is true.

The identity above is an example of a general philosophy. When we have isometries
f and g, the isometry f ˝ g ˝ f´1 is called the conjugate of g by f . Imagine you’re
playing a videogame where the screen is a view of the ground from above, and your
character is in the center of the screen. Suppose g represents how the terrain moves
when you press the up arrow. For example, maybe the terrain moves down a few
pixels, indicating that your character has moved up. Now imagine that you pick up
your monitor and rotate it counterclockwise by 90 degrees. If you now press the up
arrow, the terrain will seem to move to the right rather than down. If f is the 90
degree rotation, then this movement to the right is f ˝ g ˝ f´1.
The general philosophy is that a conjugate f ˝ g ˝ f´1 has the same type (e.g.

translation, rotation) as g, but its defining data (e.g. direction of translation, point
of rotation) has been moved by f . A precise statement along these lines is:

Exercise 1.2.7. Given f : X ÝÑ X, let Fixpfq “ tx P X | fpxq “ xu. Show that

Fixpf ˝ g ˝ f´1q “ fpFixpgqq,

whenever f, g are both bijections X ÝÑ X.
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For another couple of example, try convincing yourself that

O0,θ ˝ Tv ˝ O´1
0,θ “ TOp,θpvq, and Tv ˝ Tw ˝ T´v “ Tw.

You should verify the equations using the coordinate descriptions given above, but
also try to give a intuitive explanation as in the videogame example.

Definition 1.2.8 (Reflections). If ℓ is a line in R2, the reflection through ℓ is

Rℓ : R2 ÝÑ R2,

where Rℓpxq “ x whenever x P ℓ and otherwise Rℓpxq is the unique point such that
the line segment from x to Rℓpxq is perpendicularly bisected by ℓ.

Exercise 1.2.9. Show that reflections are isometries.

When ℓ goes through the origin, we can write it as ℓ “ ttv | t P Ru for some v P R2.
In this case, the reflection Rℓ has the following description in coordinates:

Rℓpxq “ x ´ 2 projvKpxq, where vK “

ˆ

´v2
v1

˙

.

Recall from Exercise 1.1.4 that projvKpxq “ x ¨ vK vK

|vK|2 is the closest point to x along

the line spanned by vK. Also, vK is just v rotated by π{2 counterclockwise.
For general lines, we may write ℓ “ tp ` tv | t P Ru, in which case

Rℓpxq “ Tp ˝ Rttv | tPRu ˝ T´p “ x ´ 2 projvKpx ´ pq.

`
x

projv?(x)

v?

v

R`(x)

Exercise 1.2.10. Show that reflections are isometries, but now using the coordi-
nate description.

Here are a couple more exercises to help you get the feel for isometries. They are
phrased in Rn rather than R2, simply because there is no difference in the proof.

Exercise 1.2.11 (Isometries send lines to lines). Let x, y P Rn. By the triangle
inequality, a point z lies on the line through x and y, and between x and y, if and only
if dpx, zq ` dpz, yq “ dpx, yq. Use this to show that if f : Rn ÝÑ Rn is an isometry,
then fpℓq is also a line.
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Exercise 1.2.12 (Isometries preserve angles). Suppose that f : Rn ÝÑ Rn is an
isometry and x, y, z P Rn. Let θ be the angle from the segment xy to the segment xz,
and let ψ be the angle from fpxqfpyq to fpxqfpzq.
Show that θ “ ˘ψ, i.e. the angles have the same magnitude, but one may be

counterclockwise while the other is clockwise. Hint: use the law of cosines.

1.2.1. Composing isometries of R2. We know that compositions of isometries
are isometries. For instance,

Tv ˝ Tw “ Tv`w, and Op,θ ˝ Op,ψ “ Op,θ`ψ.

What happens if we compose other pairs of isometries?

Example 1.2.13 (Composing reflections through parallel lines). Suppose ℓ, ℓ1 are
parallel lines in R2. What’s Rℓ1 ˝ Rℓ? To get some evidence, let’s pick some x P R2

that lies on the far side of ℓ from ℓ1, and very close to ℓ, and then compute Rℓ1 ˝Rℓpxq.

`

`0
x

R`(x)

R`0 �R`(x)

First, we reflect over ℓ to create Rℓpxq and then we reflect that over ℓ1 to get
Rℓ1 ˝ Rℓpxq. So, how does the resulting point compare to x?
We claim that Rℓ1 ˝ Rℓpxq is obtained from x by translating x in the direction

perpendicular to ℓ and ℓ1, and ‘from’ ℓ to ℓ1, by a distance that’s twice the distance
from ℓ to ell1. To see this, note that the line segments from x to Rℓ1pxq and from
Rℓ1pxq to Rℓ ˝ Rℓ1pxq are perpendicular to ℓ1 and ℓ, respectively. Since ℓ1 and ℓ are
parallel, this means that these segments union to the segment from x to Rℓ1 ˝ Rℓpxq,
which is therefore perpendicular to ℓ and ℓ1. The distance from x to Rℓ1 ˝ Rℓpxq is
twice that from ℓ1 to ℓ, since ℓ and ℓ1 bisect the segments from x to Rℓpxq and from
Rℓpxq to Rℓ1 ˝ Rℓpxq, respectively. We then might expect that in general:

Claim 1.2.14. If ℓ, ℓ1 are parallel, we have Rℓ1 ˝ Rℓ “ T2v, where v is a vector with
its tail on ℓ and its head on ℓ1 that is perpendicular to both lines.

To prove this, however, we have to show that Rℓ1 ˝ Rℓpxq “ T2vpxq for any x P R2,
not just the x in the picture above. For instance, what happens if x is on ℓ or ℓ1,
or on the far side of ℓ1? Of course, one way to get around this would be to just use
coordinate descriptions of the reflections, and show computationally that when they
are composed, you get a translation. However, instead of doing this, we will describe
now a trick that allows us to geometrically prove that Rℓ1 ˝ Rℓ “ T2v, but without
doing any additional cases.
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The key is the following lemma and its corollary.

Lemma 1.2.15. If p, q, x P R2 and dpx, pq “ dpx, qq, then x lies on the line that
perpendicularly bisects the segment pq. In particular, given p, q all such x are colinear.

Proof. Let m be the midpoint of the segment pq. Then the triangle with vertices
m, p, x has the same side lengths as the triangle with vertices m, p, y. By Exercise
1.1.11 (SSS) the angles of these triangles at m are the same. Since the angles sum to
π, both are π{2. Hence x lies on the perpendicular bisector as promised. □
Corollary 1.2.16. Suppose that f, g : R2 ÝÑ R2 are isometries and that x1, x2, x3 P

R2 are non-collinear. If fpxiq “ gpxiq for i “ 1, 2, 3, then fpxq “ gpxq for all x P R2.

Proof. Suppose that f, g : R2 ÝÑ R2 are isometries, that x1, x2, x3 P R2 are
non-collinear and yi “ fpxiq “ gpxiq for i “ 1, 2, 3. As both f, g are isometries,

dpfpxq, yiq “ dpx, xiq “ dpgpxq, yiq, for i “ 1, 2, 3.

Since x1, x2, x3 are non-collinear, so are y1, y2, y3, by Exercise 1.2.11. It follows from
Lemma 3.2.3 that fpxq “ gpxq. □
Corollary 1.2.16 says that if you want to know whether two isometries are the same,

it suffices to check equality only on three points. For example, we can now finish the
example above where we compose reflections through parallel lines.

Proof of Claim 1.2.14. We want to show that if ℓ, ℓ1 are parallel, we have
Rℓ1 ˝ Rℓ “ T2v, where v is a vector with its tail on ℓ and its head on ℓ1 that is
perpendicular to both lines. Above, we showed that Rℓ1 ˝ Rℓpxq “ T2vpxq whenever x
is close to ℓ, and on the opposite side of ℓ from ℓ1. But we can certainly find three
such x that are non-colinear, so Rℓ1 ˝ Rℓ “ T2v on three non-colinear points. Since
both sides are isometries, they are equal by Corollary 1.2.16. □
Here’s an exercise that has a similar solution.

Exercise 1.2.17. Show that if ℓ1 and ℓ intersect at a point p, the composition
Rℓ1 ˝ Rℓ is the rotation Op,θ, where θ is twice the angle from ℓ to ℓ1. Hint: use
Corollary 1.2.16 to reduce the proof to a single case, as in Claim 1.2.14.

So far, we have only composed isometries of the same type. What happens if we
compose a translation and a reflection?

Definition 1.2.18 (Glide reflection). Suppose 0 ‰ v P R2 and ℓ is a line parallel
to v. The composition Tv ˝ Rℓ is called the glide reflection along ℓ by v.

Note that actually Tv˝Rℓ “ Rℓ˝Tv, so it doesn’t matter in which order we write the
composition. Also, it is worth mentioning that glide reflections are not translations,
rotations or reflections: not all points are translated by the same vector, and glide
reflections do not have fixed points as do rotations or reflections.
What happens if ℓ is not parallel to v?
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Exercise 1.2.19. Suppose that v P R2 and ℓ is a line in R2.

‚ If v is perpendicular to ℓ, show that the composition Tv ˝ Rℓ is a reflection
through some line parallel to ℓ.

‚ If v is not perpendicular to ℓ, show that Tv ˝Rℓ is a glide reflection. Note: to
do this, you must show that Tv ˝ Rℓ “ Tv1 ˝ Rℓ1, where v1 and ℓ1 are parallel.
As a hint, write v “ u ` w where u is parallel to ℓ and w is perpendicular to
ℓ, and note that Tv “ Tu ˝ Tw.

Here’s a complete table listing all compositions of translations, rotations, reflections
and glide reflections. After doing Exercise 1.2.19, try to prove that some of the other
assertions made in the table are correct! In the table, the angles θ and ψ are assumed
to be in the interval p0, 2πq. And the order of multiplication doesn’t matter: for
example, the entry in the first column, third row describes both Tv ˝Rℓ1 and Rℓ1 ˝ Tv.

Tv Op,θ Rℓ Tv ˝ Rℓ
v||ℓ

Tw id if v “ ´w
otherwise translation

rotation reflection if ℓ K w
otherwise glide

reflection if v ` w K ℓ
otherwise glide

Oq,ψ rotation
id if p “ q and θ “ 2π ´ ψ
translation if p ‰ q and
θ “ 2π ´ ψ, o.w. rotation

reflection if q P ℓ
otherwise glide

reflection or glide

Rℓ1 reflection if v K ℓ1

otherwise glide
reflection if p P ℓ
otherwise glide

id if ℓ “ ℓ1

translation if ℓ||ℓ1, ℓ1 ‰ ℓ
otherwise rotation

translation if ℓ1||ℓ
otherwise rotation

Tw ˝ Rℓ1

w||ℓ1
reflection if v ` w K ℓ1

otherwise glide
reflection or glide translation if ℓ1||ℓ

otherwise rotation

id if v “ ´w
o.w. translation if ℓ||ℓ1

o.w. rotation

In particular, any composition of reflections, rotations, translation or glide reflections
is again an isometry of one of these types.

So, are there other isometries of R2 that we haven’t discovered yet?

Theorem 1.2.20 (Classification of Euclidean isometries). Every isometry of R2 is
either the identity, a translation, a rotation, a reflection or a glide reflection.

We will work towards a proof of this theorem in steps. Here is step one.

Claim 1.2.21. Suppose f : R2 ÝÑ R2 is an isometry and there are points x ‰ y P
R2 such that fpxq “ x and fpyq “ y. Then f is either the identity or a reflection.

Proof. Pick a point z that is not on the line ℓ through x, y. Then

dpfpzq, xq “ dpz, xq and dpfpzq, yq “ dpz, yq.

Therefore, either fpzq “ z or fpzq is the other point of intersection of the circle
around x with radius dpz, xq and the circle around y with radius dpz, yq, which is
Rℓpzq. Corollary 1.2.16 then shows that either f “ id or f “ Rℓ. □
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Next, let’s assume that f fixes only a single point.

Claim 1.2.22. Suppose f : R2 ÝÑ R2 is an isometry and fpxq “ x for some x P R2.
Then f is either the identity, a rotation or a reflection.

Proof. Pick some y ‰ x. Then dpfpyq, xq “ dpy, xq, so there is a rotation Ox,θ

with Ox,θpyq “ fpyq. Consequently, O´1
x,θ ˝ f fixes both x and y, so must be either the

identity or a reflection (in a line through x) by the previous claim. So,

f “ Ox,θ ˝
`

O´1
x,θ ˝ f

˘

is a composition of a rotation and either the identity or a reflection, and hence is
either the identity, a reflection or rotation. □
Finally, we can prove the full theorem.

Proof of Theorem 1.2.20. Let f : R2 ÝÑ R2 be an isometry and pick some
x P R2. Then Tx´fpxq ˝ fpxq “ x, so by the previous claim Tx´fpxq ˝ f is either the
identity, a rotation, or a reflection. Since we have

f “ Tfpxq´x ˝ pTx´fpxq ˝ fq,

f is a composition of isometries of the given types, so also is one of the given types
of isometries, from our work above. □

1.2.2. Exercises.

Exercise 1.2.23. Prove that every isometry of R2 is the composition of at most
three reflections. Is three necessary, or would only two reflections suffice?

Exercise 1.2.24. Show that every isometry of R, where dpx, yq “ |x´ y|, is either
the identity, a translation, or a reflection through a point. Here, the reflection through
a P R is the map Ra : R ÝÑ R defined by Rapxq “ 2a ´ x.

Exercise 1.2.25. Describe at least 5 qualitatively different types of isometries
of R3. You can try to write them out in coordinates for a challenge, but it will
be sufficient to just give a geometric description. You don’t have to prove they are
isometries.

Exercise 1.2.26. Consider R2 with the metric dmaxpx, yq “ maxit|xi ´ yi|u. Show
that all translations are dmax-isometries, and that a rotation Op,θ is a dmax-isometry
if and only if θ is a multiple of π{2.

Exercise 1.2.27. Here’s a proof that the shortest path between two points is a
line segment using the integral formula for path length, rather than Definition ??.

(a) Using the integral formula for path length, show that any path joining the
points px, 0q, py, 0q P R2 has length at least |y ´ x|, with equality only if it
stays on the line segment between them. Hint: if γptq “ pγ1ptq, γ2ptqq is such
a path, compare its length to that of the path αptq “ pγ1ptq, 0q.
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(b) Using isometries and part (a), prove that a path joining two arbitrary points
p, q P R2 has length at least dpp, qq, with equality only if it stays on the line
segment between them.

We say that a bijection f : X ÝÑ X of a metric space is a similarity if there is
some constant λ ą 0 such that dpfpxq, fpyqq “ λdpx, yq, @x, y P X. Any isometry is
a similarity, where λ “ 1. Another example is the dilation around a point p P Rn:

Dp,λ : Rn ÝÑ Rn, Dp,λpxq “ λpx ´ pq ` p.

Geometrically, a dilation fixes p and stretches every vector based at p by the scaling
factor λ. Dilations are similarities, since

dpDp,λpxq, Dp,λpyqq “ |λpx ´ pq ` p ´ λpy ´ pq ´ p|

“ λ |x ´ y|

“ λ dpx, yq.

Exercise 1.2.28. Show that every similarity of Rn is a composition of a dilation
and a isometry of Rn.

Similarities send lines to lines – the proof is exactly the same as that for isometries,
as described in Exercise 1.2.11. Moreover, similarities of R2 send circles to circles:

Exercise 1.2.29. Show that if C is a circle in R2 and f : R2 ÝÑ R2 is a similarity,
then fpCq is also a circle.

1.3. Isometries of R3

We discussed isometries of R2 at length in §1.2, and showed that there are only
four types: translations, rotations, reflections and glide reflections.

Theorem 1.3.1. There are seven types of isometries of R3: the identity, transla-
tions, rotations, screw motions, reflections, glide reflections, and twist reflections.

Here, rotations are around lines and reflections are through planes, a screw motion
is the composition of a rotation around a line ℓ and a translation parallel to ℓ, a
glide reflection is the composition of a reflection through a plane P and a translation
parallel to P , while a twist reflection is the composition of a rotation around a line
and a reflection through a perpendicular plane, as pictured below.
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p

f(p)

screw motion

p

f(p)

q

f(q)

q

f(q)

twist reflection

The proof of Theorem 1.3.1 similar to the classification of isometries of R2 presented
in Theorem 1.2.20, although there are a couple more cases to consider. Here are some
exercises that will guide you through the proof.

Exercise 1.3.2. Suppose x1, . . . , x4 P R3 are not coplanar. If p, q P R3, show that

dpp, xiq “ dpq, xiq @i “ 1, . . . , 4 ùñ p “ q.

Conclude that whenever f, g : R3 ÝÑ R3 are isometries such that fpxiq “ gpxiq for
all i, then fppq “ gppq for all p P R3.

Exercise 1.3.3. Suppose P and P 1 are planes in R3. Show that the composition
of the reflections through P and P 1 is a rotation around the line ℓ “ P X P 1 if the
planes intersect, and is a translation otherwise.

Exercise 1.3.4. Show that a composition of two rotations around lines passing
through p P R3 is another rotation around a line passing through p.

Exercise 1.3.5. Suppose that a line ℓ and a plane P pass through a point p P R3.
Show that the composition of a rotation around ℓ and a reflection through P is a
reflection if ℓ Ă P and a twist reflection otherwise.

Exercise 1.3.6. Suppose that f : R3 ÝÑ R3 is an isometry.

(a) If fppq “ p for all p in some plane P , show that f is either a reflection through
P or is the identity. Hint: use 1.3.2.

(b) If fppq “ p for all p in some line ℓ, show that f is either the identity, a
reflection through plane containing ℓ, or a rotation around ℓ. Hint: use (a)
and 1.3.3.

(c) If fppq “ p for some p P R3, show that f is either the identity, a reflection, a
rotation, or a twist reflection. Hint: use (b) and 1.3.3.

Exercise 1.3.7. Show that the composition of a translation and rotation is a screw
motion unless the direction of translation is perpendicular to the axis of rotation, in
which case the composition is a rotation.
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Exercise 1.3.8. Show that the composition of a translation and a twist reflection
is a twist reflection.

Exercise 1.3.9. Show that the composition of a translation and a reflection is a
reflection if the direction of translation is perpendicular to the plane of reflection, and
a glide reflection otherwise.

Exercise 1.3.10. Prove Theorem 1.3.1, using the previous 3 exercises and 1.3.6
(c).

1.4. The Chord Theorem

Suppose that γ : ra, bs ÝÑ R2 is a path. A chord for γ is a line segment both of
whose endpoints lie on γ.

Theorem 1.4.1 (The Chord Theorem). If C is a chord for γ with length a, then
for every n “ 1, 2, . . ., there is another chord for γ with length a{n that is parallel to
C.

C

parallel chord with length a third that of C

The proof will use the following lemma.

Lemma 1.4.2. Suppose C is a chord for γ with length c. Then for every α P p0, 1q,
there is a parallel chord either with length αc or length p1 ´ αqc.

Proof. After rotating, scaling and translating the picture, let’s assume for sim-
plicity that C is the line segment joining the origin to p1, 0q. Let

Xs “ tγptq ` ps, 0q | t P ra, bsu.

We’ll be particularly interested in X0, which is just the image of γ, and Xα, X1, which
are obtained by shifting the image of γ to the right by α and 1, respectively. It suffices
to show that either X X Xα ‰ H or Xα X X1 ‰ H, for γ has a horizontal chord of
length α exactly when X0 intersects its translate Xα, while a length 1 ´ α chord
amounts to the second intersection being nonempty. So, hoping for a contradiction,
assume that X X Xα “ H “ Xα X X1.

X↵

�
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Construct a bi-infinite path β by taking the part of Xα between its highest point
and its lowest point, and concatenating with vertical rays emanating up from the
highest point and down from the lowest point, as in the picture above. We claim that
β is disjoint from X0. First, X0 cannot intersect the part of β that lies along Xα,
since we assumed that X0 XXα “ H. But Xα is a horizontal shift of X0, so no point
of X0 can be higher than the highest point of Xα, or lower than the lowest point of
Xα, so X0 cannot intersect the other two parts of β. Similarly, X1 is disjoint from β.
The path β splits the plane into two pieces. We saw above that β is disjoint from

both X0 and X1. In fact, X0, X1 lie on different sides of β, where X0 is on the ‘left’
and X1 is on the ‘right’. So, X0 and X1 are disjoint.
Now, we started out by assuming that the line segment joining the origin to p1, 0q

was a chord, so both the origin and p1, 0q lie in X0. But if the origin lies in X, then
p1, 0q lies in X1 as well! So, X0, X1 intersect. This is a contradiction. □
Exercise 1.4.3. Prove the chord theorem, using the lemma. Hint: try to prove

the following statement using induction on n: for every n, whenever C is a chord for
γ of length a, there is a parallel chord for γ with length a{n.

In fact, for every α P p0, 1q that is not of the form 1
n
, for some natural number n,

the conclusion of the chord theorem fails! That is, for each such α, there is a path γ
with a chord of length a that has no parallel chord with length αa! Here is an explicit
example.

Exercise 1.4.4. Suppose that α P p0, 1q and that α ‰ 1{n for any n P N. Show
that the graph of the function fpxq “ sin2pπx{αq ´x sin2pπ{αq has a horizontal chord
of length 1, but no horizontal chord of length α.

Exercise 1.4.5. Suppose that f : R ÝÑ R is continuous and periodic, meaning
that for some a P R, we have fpx` aq “ fpxq for all x. Show that the graph of f has
horizontal chords of every length.

1.5. Polygons and Triangulations

A path in R2 is a continuous map γ : ra, bs ÝÑ R2. A loop is a path that doesn’t
intersect itself and comes back to where it started, i.e. a path γ such that if γpaq “
γpbq, and where if x ‰ y P ra, bs then γpxq “ γpyq only when one of x, y is a and the
other is b. The first two paths below are not loops, while the latter two are loops.

A polygon is a region of the plane bounded by a finite number of line segments that
form a loop. Polygons with n sides are also called n-gons, and for small n we also use
the conventional terms triangle, quadrilateral, pentagon, hexagon, etc.
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an 8-gon, a 4-gon, not polygons
or octogon or quadrilateral

Exercise 1.5.1. Show that the following are equivalent, for a quadrilateral Q. We
call a quadrilateral satisfying any/all of these four conditions a parallelogram.

(a) opposite sides of Q have the same length,
(b) angles at opposite vertices of Q are equal,
(c) opposite sides of Q are parallel,
(d) the diagonals of Q bisect each other.

Hint: prove paq ùñ pbq ùñ pcq ùñ pdq ùñ paq. You might find the SSS,
SAA and SSA conditions for congruence of triangles useful, as described in Exercises
1.1.11 and 1.1.12, the fact that the angle sum of a quadrilateral is 2π, and the fact
that two lines are parallel if and only if whenever another line intersects them both,
the ‘alternate interior angles’ are equal, as pictured below.

↵

↵

A triangulation of a polygon P is a collection of triangles that union to P , whose
vertices are all vertices of P , and where any two of the triangles intersect exactly in
an entire edge of each, or in a vertex of each.

So, can every polygon be triangulated? You can probably guess that the answer
is yes, but how do you prove it in general? Looking at the examples above, the first
step in triangulating a polygon is to show it has a diagonal, a line segment connecting
two nonadjacent vertices of P that is entirely contained in P .
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a diagonal

Lemma 1.5.2. If n ě 4, any n-gon has a diagonal.

Proof. Pick a vertex p of P such that the interior angle at P is less than π,
and let q, r be the adjacent vertices. (For instance, you can take p to be a ‘leftmost’
vertex of P , i.e. a vertex where the first coordinate is as small as possible. Then q
and r both lie to the right of p, so the interior angle is less than π.) The point of
requiring that the interior angle is less than π is that then, if you start moving into
the triangle pqr from p, you move into P rather than out of it.

p

q

r

p

q

r

z

Case (1) Case (2)

Figure 2. The two cases in the inductive step.

If the segment qr is a diagonal, we are done. So, assume qr is not contained in P .
In this case, there must be vertices of P inside the interior of the triangle pqr. Let z
be the vertex in the interior of pqr that lies farthest from the segment qr.
We claim that pz is a diagonal. Since the segment pz starts out at p by going into

P , the only way it can fail to be a diagonal is if it hits the boundary of P before it
hits z. It cannot hit a vertex of P before z, since that vertex would be farther from qr
than z. And it cannot hit an edge of P before z, since if it did, one of the two vertices
of that edge has to lie in pqr and be farther from qr than z, contrary to assumption.
So, pz is a diagonal. □
Theorem 1.5.3. Every n-gon in R2 admits a triangulation with n ´ 2 triangles.

Proof. The proof is by induction, and the base case n “ 3 is obvious. So,
suppose that the theorem is true for pn ´ 1q-gons, and let P be an n-gon.
By the lemma, P has a diagonal, which cuts P into two polygons with fewer vertices,

say an i-gon and a j-gon. Note that i ` j “ n ` 2, since the vertices of the diagonal
appear in both polygons. By induction, the i-gon and j-gon admit triangulations with
i´2 vertices and j ´2 triangles, respectively. The union of the two is a triangulation
of P with i ´ 2 ` j ´ 2 “ i ` j ´ 4 “ n ´ 2 triangles, as desired. □
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If f, g : N ÝÑ N are functions, we say that f “ Opgq if there is some real number
C such that fpnq ď C ¨ gpnq for all n. This is called big O notation, and is especially
common in computer science. For example, you can check that

p1 ` n5qpsinpnq ` n2q “ Opn7q.

Exercise 1.5.4. Analyzing the proof above, explain why the number of steps
required to triangulate an n-gon is Opn4q. Here, we’re not being so careful with
defining ‘step’. Like, if you’re doing an arithmetic computation, is computing 13 ` 9
a single step, or do you have multiple steps corresponding to how you’d write out the
computation on paper? The advantage of the big O notation is that you don’t have to
sweat these kind of details, since if the total number of steps is 100n vs 2n, it’s still
Opnq.

There are faster ways to triangulate polygons, though. Here’s one approach.

Definition 1.5.5. An ear of a polygon P is a triangle consisting of three consec-
utive vertices r, p, q on the boundary of P such that p, q is a diagonal. Two ears of
P overlap if their interiors intersect, which happens when they’re the same ear, or
when we have 4 consecutive vertices r, p, q, z on the boundary of P , and the two ears
we’re considering are the triangles rpq and pqz.

Theorem 1.5.6. If n ě 4, every n-gon P has two non-overlapping ears.

Proof. We proceed by (strong) induction. If n “ 4, we’re done, since either of
the two possible diagonals splits P into two non-overlapping ears. For the inductive
case, suppose we have n-gon P , and that the theorem holds for polygons with fewer
sides. Pick a diagonal xy, and split P along it into two polygons with fewer vertices.
By induction, each of these has two nonoverlapping ears, so there’s one ear of each
that doesn’t use the edge xy. These are two nonoverlapping ears of P . □
Exercise 1.5.7. By looking for ears instead of arbitrary diagonals, give an algo-

rithm to triangulate an n-gon in Opn3q steps.

This strategy for triangulating a polygon is called ear clipping. It turns out that
if done extra intelligently, see this article, ear clipping actually gives an Opn2q-time
algorithm for triangulating an n-gon. There are also good Opn log nq algorithms,
which are what are used in practice. Chazelle (1991) even gave an Opnq algorithm,
but it’s so ridiculously complicated that noone uses it in practice.

Exercise 1.5.8. Show that for each n, there is an n-gon with a unique triangula-
tion!

Here’s a nice application of ears and triangulations. Suppose that we have a polygon
that represents an art gallery. The art gallery problem asks ‘if the polygon has n sides,
how many cameras do we need to install in the gallery so that every point is always
on camera’? Assume that the cameras have a full 360˝ field of vision.

https://www.sciencedirect.com/science/article/pii/016786559390141Y
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Theorem 1.5.9. tn{3u cameras always suffice, and for each n, there is an example
in which tn{3u cameras are necessary.

Here, txu is the greatest integer less than or equal to x, so t2.32u “ 2. To prove the
theorem, we’ll need the following lemma, which we prove via ear clipping.

Lemma 1.5.10. Suppose that P is a triangulated polygon. Show that the vertices of
P can be colored with three colors so that vertices that share an edge of the triangu-
lation have different colors.

We will call such a coloring of the vertices a 3-coloring of P .

legal illegal

!!

!!

Proof. We use strong induction on the number of sides of the polygon P . Cer-
tainly, the vertices of a triangle can be thus colored, just by using different colors for
the three vertices. So, assume that the vertices of any triangulated polygon with less
than n vertices can be three colored, and let P be a triangulated n-gon.
Let xy be a diagonal of P . Then xy splits P into two triangulated polygons Q,R

with less than n vertices, which can both be 3-colored. The vertices x, y must have
different colors in both Q and R, so by permuting the colors in R, we can assume
that x is the same color in Q,R and y is the same color in Q,R. The two colorings
then combine to give a coloring of the vertices of P as desired. Since every diagonal
of P is a diagonal of either Q or R, this coloring is a 3-coloring as desired. □

Proof of Theorem 1.5.9. Triangulate our n-gon P , and color the vertices of
P so that vertices was that share an edge of the triangulation have different colors.
One of the colors, say ‘blue’, appears at most tn{3u times, and we station our cameras
at the blue vertices. Every triangle in the triangulation must have a blue vertex, since
otherwise one of its edges would connect two vertices of the same color. As a camera
stationed at such a blue vertex can see the entire adjacent triangle, our blue-positioned
cameras can see the entire art gallery.
Here is an example indicating that tn{3u cameras are necessary.
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If there are k peaks in the triangle above, there are n “ 3k total vertices. Each
peak vertex casts a blue shadow in the polygon, and a camera that sees the peak
must be positioned somewhere in this shadow. As all the shadows are disjoint, we
need at least k “ n{3 cameras. This gives an example as long as n is a multiple of
three. To make examples with n “ 3k ` 1 or n “ 3k ` 2, just insert either one or two
additional vertices into the bottom edge of the polygon drawn above. □

1.5.1. Exercises.

Exercise 1.5.11. As an extension of the art gallery problem, construct a polygon
P and a placement of cameras in P such that every point of the loop bounding P is
on camera, but some point of the interior of P is not.

A polygon is regular if all its side lengths are the same and all its angles are the
same. One can construct a regular n-gon by choosing a center c, then laying the
vertices of the polygon at angle increments of 2π{n along a circle centered at c.

2⇡/9 a regular 9-gon
c

v

w

Exercise 1.5.12. Show that all regular n-gons are of this form. Hint: to prove this,
you must take a polygon P all of whose side lengths and angles are equal, construct
the center c and show that the vertices lie as described along a circle centered at c.
If v, w are adjacent vertices of P , construct a triangle using the line segment vw and
segments of the interior angle bisectors at the vertices v, w, pictured above in purple.
Explain why the third vertex of this triangle is always the same, no matter which
adjacent pair v, w is chosen. Then use this as your c.

Exercise 1.5.13. Draw an example of a pentagon with all the same side lengths,
but not all the same angles. Is it possible to do this with a quadrilateral?
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Exercise 1.5.14. The interior angles of a triangle sum to π. Show that the interior
angles of an n-gon sum to πpn ´ 2q, and then use this to find a formula for the
individual interior angles of a regular n-gon.

Exercise 1.5.15. Show that any triangulation of an n-gon has exactly n ´ 2 tri-
angles. Hint: you can do this with an induction proof.

A polygon P is convex if whenever x, y P P , the line segment xy Ă P . Try to draw
some examples of convex, and non-convex polygons.

Exercise 1.5.16. Let’s say a vertex of a polygon P is convex if its interior angle is
at most π, and concave otherwise. Show that P is convex if and only if all its vertices
are convex.

Exercise 1.5.17. How many triangulations can a polygon have? We saw in Exer-
cise 1.5.8 that the answer may be 1. On the flip side, any convex polygon has many
triangulations, since the line segment connecting any two vertices is a diagonal. In-
deed, it turns out that convex n-gons have the most triangulations out of all n-gons,
and that all convex n-gons have the same number of triangulations. (Try to convince
yourself of this if you like, but you don’t have to write a proof.) In this problem, we’ll
try to calculate this number.
Let tn be the number of triangulations of (any) convex n-gon. For convenience,

let’s also define t2 “ 1, even though there’s no actual polygon with only two sides.

(a) Calculate t3, t4, t5 explicitly, by drawing all possible triangulations.
(b) Show that tn`1 “

řn
i“2 titn´i`2 Hint: Fix some edge e of a pn`1q-gon. When

constructing a triangulation, there are n ´ 1 options for the third vertex in
the triangle that is adjacent to e, and there are n ´ 1 terms in the sum...

(c) Use the formula in (b) to calculate both t6 and t7. Do not try to draw any
triangulations, but show the work in your calculations.

Exercise 1.5.18 (A continuation of Exercise 1.5.17). The nth Catalan number is

Cn “
1

n ` 1

ˆ

2n

n

˙

.

These numbers come up in a bunch of different counting problems—check out the
Wikipedia entry for more informations if you like.

(a) Show that Cn satisfies

C0 “ 1, Cn`1 “
n

ÿ

i“0

CiCn´i.

(b) Show that tn “ Cn´2, where tn is as in Exercise 1.5.17.
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1.6. Tangrams and Scissors Congruence

The tangram is a puzzle in which one is given a set of seven pieces (five triangles
of varying sizes, a parallelogram and a square) and is asked to arrange them into
prescribed configurations. Only the outline of the desired shape is given, and the
appropriate configuration can be difficult to find.

a tangram set the puzzles

The puzzle originated in China. Although the creator of the game is no longer
known, you can find many fictionalized origin stories on the Internet. Many of them
begin with a sentence like “Once upon a time, a man had a treasured clay tile...”;
often, you can imagine the rest. There are even creation myths based on tangrams!
Try googling tangram history if you want to take a trip down the rabbit hole.
In 1815, the tangram puzzle was brought from China to the US on the ship Trader,

by Capt. M. Donaldson. It was then exported to Britain, Germany and Denmark.
Also known as “the anchor puzzle” and “the Sphinx”, it became one of the most
popular games of the 19th century in America and Europe. One reason for the
popularity of such puzzles at the time was that the Catholic Church tolerated playing
them on the Sabbath.

There is some interesting mathematics related to the tangram puzzle.

Definition 1.6.1. Two subsets P,Q of R2 are scissors congruent if they are the
unions of polygons P1, . . . , Pn and Q1, . . . , Qn, respectively, intersecting only on their
edges, such that Pi and Qi are congruent for each i.
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P
Q

In other words, P and Q are scissors congruent if one can be cut along line segments
and reassembled into the other. As an example, any tangram puzzle that has a
solution must be scissors congruent to a square!

Exercise 1.6.2. If P and Q are scissors congruent and Q and R are scissors con-
gruent, show that P and R are scissors congruent. In other words, scissors congruence
is an ‘equivalence relation’.

Note that the subsets P,Q in the definition of scissors congruence may be polygons,
but they may also be unions of disjoint polygons! For instance, the two unions of
polygons in the middle of the figure above are both scissors congruent to P and Q.
Even if one is only interested in polygons, this extended point of view is useful, since
it is often useful to use the Exercise repeatedly to prove that polygons are scissors
congruent by passing through intermediate subsets of R2 that are not polygons.

Exercise 1.6.3. Cut a square along the following line segments. Show that the
resulting pieces can be rearranged into an isosceles triangle.

So, when are two polygons scissors congruent? Well, certainly the two polygons
must have the same area. In fact, the converse is true:

Theorem 1.6.4 (Wallace-Bolyai-Gerwein). Two polygons A and B are scissors
congruent if and only if they have the same area.

A word is in order about the triple attribution. Some sources say that the problem
was posed by Bolyai, then solved by Gerwein in 1833 and by Wallace in 1807. Others
say that it was proved by Bolyai in 1835. So to be safe, we give credit to everyone!
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Lemma 1.6.5. Any two rectangles with the same area are scissors congruent.

Proof. The following move on rectangles is called a ‘P-slide’ - the only constraint
here is that α is less than or equal to half the width of the rectangle.

↵

↵

Using a P-slide or its inverse, a rectangle with width a is scissors congruent to any
rectangle with the same area and width in ra{2, 2as. So, repeated P-slides can be
used to show that any two rectangles with the same area are scissors congruent. □

Proof of Theorem 1.6.4. Let A be a polygon. We will show that A is scissors
congruent to a square with the same area. Cut A into triangles using Theorem 1.5.3.
Each triangle can be cut into two right triangles, which can be reassembled into a
rectangle.

Using a P-slide, alter each rectangle so that its width is
a

AreapAq. Stacking the
rectangles must give a square, since it is a rectangle with the same area as A. □
Two subsets P,Q of R2 are scissors congruent via translations if they are the unions

of polygons P1, . . . , Pn and Q1, . . . , Qn, respectively, intersecting only on their edges,
such that Pi and Qi differ by a translation for each i. Similarly, one could consider
‘scissors congruence via translations and rotations by π’. The point is that now we
are limiting the movement of the polygons to certain isometries.

Exercise 1.6.6. (Hard) Show that any two rectangles with the same area are
scissors congruent via translations. Hint: P-slides can be used to alter the dimensions
of a rectangle. The real trick is to say why you can rotate a rectangle. Here’s a hint:
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Exercise 1.6.7. Show that any two polygons with the same area are scissors
congruent via translations and rotations by π. Hint: repeat the proof of Theorem
1.6.4 using Exercise 1.6.6.

Given a vector v P R2, the v-Hadwiger invariant of a collection of polygons is the
real number obtained by summing up the signed lengths of all edges perpendicular
to v, where the sign of an edge is `1 if v points outward and ´1 if v points inward.

v-Hadwiger = length(e1)� length(e2).

v

+1

�1

e1

e2

Exercise 1.6.8. Show that if v P R2, the v-Hadwiger invariants of two collections
of polygons that are scissors congruent via translations must be equal. Use this to
give an example of two polygons that are not scissors congruent via translations.

Exercise 1.6.9. Suppose P,Q are two polygons in R2 that have the same area.
Can you write P,Q as unions of polygons P “ P1 Y P2 and Q “ Q1 Y Q2 such that
Pi is congruent to Qi for i “ 1, 2?

Exercise 1.6.10. Suppose that P,Q are two polygons in R2 that have the same
area and the same perimeter. Show that there is a scissors congruence from P to Q
that takes points on the boundary of P to points on the boundary of Q.

1.7. Polyhedra and the Dehn invariant

Loosely1, a polyhedron is a solid in R3 bounded by a collection of polygons (faces)
that meet along their edges. Here are some examples of polyhedra.

1It’s surprisingly difficult to give a good definition of a polyhedron that conforms exactly to one’s
intuition, and many early treatments of polyhedra suffered from the lack of a precise definition. The
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The polyhedra on the left are the Platonic solids, which may be familiar from high
school geometry. On the right is the famous ‘Rabbitic solid’, which has thousands of
faces, but not the one that counts.
Just as for polygons, we say that two subsets P,Q of R3 are scissors congruent if

they are the unions of polyhedra P1, . . . , Pn and Q1, . . . , Qn, respectively, intersecting
only on their faces, such that Pi and Qi are congruent for each i.
Again, scissors congruence is an equivalence relation, and the cut-and-reassemble

picture is the same as before, except that we cut along planes instead of lines.

The volume of a polygon in R3 is zero, so volume sums when polyhedra are glued
along their polygonal faces. So, scissors congruent subsets of R3 have the same volume.

Question. Is it true that any two polyhedra in R3 with the same volume are
scissors congruent?

In 1900, the mathematician David Hilbert devised a list of 23 problems to focus
research in the 20th century. The innocuous question above was the third problem.
Three months later, it was solved by Hilbert’s student Max Dehn.

Theorem 1.7.1 (Dehn, 1900). A cube and regular tetrahedron of the same volume
are not scissors congruent.

definition we give here is a little bit vague, but we’ll be content with it and use our intuition. Note
that for instance, if you put a delete a small cube from the interior of a bigger cube, the result is a
polyhedron under most reasonable interpretations of our definition.



28 1. EUCLIDEAN GEOMETRY

A tetrahedron is featured in the picture above. Regular tetrahedrons are those that
have all their side lengths and dihedral angles equal. Here, a ‘dihedral angle’ is the
angle at which two faces meet along an edge.

Exercise 1.7.2. The four points p˘1, 0,´1{
?
2q, p0,˘1, 1{

?
2q in R3 form the

vertices of a regular tetrahedron.

(a) Show that indeed, all the distances between pairs of these points are the
same. (In your write-up, just do 3 of the 6 pairs.)

(b) Pick some edge of the tetrahedron, and show that the associated dihedral
angle is cos´1p1{3q. (All edges will give you the same dihedral angle, but I’m
only asking you to do the computation for one edge, of your choice.)

Hint: for (b) you’ll need to do a little bit of multivariable calculus to compute dihedral
angles. The point is that the angle at which two planes intersect is the same as the
angle between two vectors that are respectively perpendicular (‘normal’) to the two
planes. To find these normal vectors, note that if vectors v, w are not scales of each
other, and both lie along the plane P (i.e. their heads and tails both lie in P ) then a
normal vector for P is the cross product

v ˆ w “ det

¨

˝

i j k
v1 v2 v3
w1 w2 w3

˛

‚“ pv2w3 ´ w2v3qi ´ pv1w3 ´ w1v3qj ` pv1w2 ´ w1v2qk.

Here, we are using the multivariable calculus notation pa, b, cq “ ai`bj`ck, so in our
usual notation the cross product is v ˆ w “ pv2w3 ´ w2v3, w1v3 ´ v1w3, v1w2 ´ w1v2q.

We will give a proof of Dehn’s theorem in the remainder of the section. The point
is to come up with an appropriate invariant – a number that one can associate to a
union of polyhedra that does not change under scissors congruence. This requires a
sort of lengthy digression into some (fascinating) algebra.

We say that a function f : R ÝÑ R is additive if fpxq ` fpyq “ fpx ` yq for all
x, y P R. As an example, if c P R, then the function

f : R ÝÑ R, fpxq “ cx

is additive, since cpx ` yq “ cx ` cy. We call additive functions of this type linear.
So, are there any nonlinear additive functions? We will prove:

Proposition 1.7.3. There is an additive function f : R ÝÑ R such that

fpcos´1p1{3qq “ 1, fpπq “ 0.

Note that this f cannot be linear, since it cannot be that cπ “ 0 while c cos´1p1{3q “
1. And what is truly bizarre is that the proof of Proposition 1.7.3 just guarantees
the existence of such an f , it does not actually construct one explicitly. In fact, it is
provably impossible to write down a formula for a nonlinear additive function!

Exercise 1.7.4. Show that if f is additive, fpqxq “ qfpxq for all x P R and q P Q.
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Assuming Proposition 1.7.3, let’s see how to prove that a cube and a regular tetra-
hedron are never scissors congruent. Let f : R ÝÑ R be an additive function such
that fpπq “ 0, so for instance f could be the function from Proposition 1.7.3. The
Dehn invariant Df associated to f is defined as follows. If P is a union of polyhedra,
let

lengthpeq and =peq

be the length and dihedral angle of an edge e of P , and define

Df pP q “
ÿ

edges e of P

lengthpeqfp=peqq.

Theorem 1.7.5. If P and Q are unions of polyhedra that are scissors congruent,
then Df pP q “ Df pQq for any additive f such that fpπq “ 0.

Proof. We just need to show that Df does not change when a polyhedron of P
is cut by a plane, for moving the pieces around by isometries does not change Df .
To do this, we examine the effect that a cut has on a given term lengthpeqfp=peqq

of the summation defining Df pP q. Clearly, this term is only affected if the cutting
plane intersects e.

e

e1

e2

d2

d1

Suppose first that the cut divides e into two edges e1 and e2, as in the picture
above. The joint contribution of e1 and e2 to Df is then the same as that of e:

lengthpeqfp=peqq “ plengthpe1q ` lengthpe2qqfp=peqq

“ lengthpe1qfp=peqq ` lengthpe2qfp=peqq

“ lengthpe1qfp=pe1qq ` lengthpe2qfp=pe2qq.

So, any change in Df cannot come from the e edges. Similarly, if the edge e actually
lies on the cutting plane, then after the cut, e becomes two edges e1 and e2, each of
which has the same length as e, and where =pe1q ` =pe2q “ =peq. So,

lengthpe1qfp=pe1qq ` lengthpe2qfp=pe2qq “ lengthpeq
´

fp=pe1qq ` fp=pe2qq
¯

“ lengthpeqfp=peqq.
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But wait, you say, there are additional edges introduced by these cuts that we have
not accounted for! These new edges come in pairs, e.g. d1 and d2 above, where the
edges in a pair have the same length and have dihedral angles summing to π. So,

lengthpd1qfp=pd1qq ` lengthpd2qfp=pd2qq “ 0,

by additivity of f and the fact that fpπq “ 0. This means that the new edges
introduced by the cut do not contribute to Df . Thus, Df is unchanged when a
polyhedron of P is cut by a plane. □
We can now prove the main result of this section, that a cube and a regular tetra-

hedron are never scissors congruent.

Proof of Theorem 1.7.1. Now suppose that both fpπq “ 0 and fpcos´1
`

1
3

˘

q “
1, as in Proposition 1.7.3, and let C and T be a cube and a regular tetrahedron. Since
the dihedral angles of C and T are π{2 and cos´1

`

1
3

˘

, respectively, we see that

Df pCq “ 12 ¨ ℓC ¨ f
´π

2

¯

“ 12 ¨
1

2
¨ fpπq “ 0,

Df pT q “ 4 ¨ ℓT ¨ f

ˆ

cos´1

ˆ

1

3

˙˙

‰ 0,

where here, ℓC and ℓT are the lengths of the edges in C and T , respectively. Since
Df pCq ‰ Df pT q, Theorem 1.7.5 says that C and T are not scissors congruent. □

1.7.1. Linear algebra over Q: a proof of Proposition 1.7.3. We now prove
that there is an additive function f with fpcos´1p1{3qq “ 1 and fpπq “ 0, as required
by Proposition 1.7.3. The proof involves some elementary number theory, and some
arguments that you may have seen in linear algebra, adapted to a new setting.
The existence of such an f doesn’t have much to do with the particular numbers

given; rather, what matters is that cos´1p1{3q and π are not rational multiples of each
other. Let’s prove this first. To do so, we’ll need the following tool, which one can
use to prove that numbers are irrational.

Theorem 1.7.6 (The Rational Root Theorem). If x “ p
q
is a fraction in lowest

terms that is a solution of anx
n ` ¨ ¨ ¨ ` a0 “ 0, where each ai P Z, then p|a0 and q|an.

Proof. As anpp
q
qn ` ¨ ¨ ¨ ` a0 “ 0, multiplying by qn and shifting the constant

term,
p

`

anp
n´1 ` ¨ ¨ ¨ ` a1q

n´1
˘

“ ´a0q
n.

As p, q are co-prime, so are p, qn. So, as the expression in parentheses is an integer,
p divides a0. The proof that q|an is similar. □
A polynomial fpxq “ anx

n ` ¨ ¨ ¨ ` a0 with integer coefficients is called an integer
polynomial. It is called monic if an “ 1. We call a number x P R such that fpxq “ 0
a root of f .

Corollary 1.7.7. If x P Q is a root of a monic, integer polynomial, then x P Z.
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Proof. Suppose pp
q
qn ` an´1pp

q
qn´1 ` ¨ ¨ ¨ ` a0 “ 0, where p{q is in lowest terms.

By the Rational Root Theorem, q|1, so q “ ˘1, implying p
q
is an integer. □

As an application, note that if m P N, then x “
?
m is a root of x2 ´ m “ 0, so?

m is only rational when m is a perfect square. In particular,
?
2 is irrational.

Here is the application that we are most interested in, though.

Proposition 1.7.8. Within the interval r´π, πs, the only rational multiples of π
that have rational cosine are 0,˘π

3
,˘π

2
,˘π.

Note that the cosines of the angles 0,˘π
3
,˘π

2
,˘π are 1,˘1

2
, 0,´1, respectively. So,

if q is any rational number except 1,˘1
2
, 0,´1, Proposition 1.7.8 implies that cos´1pqq

is not a rational multiple of π. In particular,

Corollary 1.7.9. cos´1p1
3
q is not a rational multiple of π.

The proof of the proposition is an application of Corollary 1.7.7.

Proof of Proposition 1.7.8. By the angle sum formula, for α P R and n P N,
we have

cos
`

pn ` 1qα
˘

` cos
`

pn ´ 1qα
˘

“ cospnαq cospαq ´ sinpnαq sinpαq ` cospnαq cosp´αq ´ sinpnαq sinp´αq

“ 2 cospnαq cospαq.

So, setting x “ 2 cospαq and ‘Pnpxq’“ 2 cospnαq, this implies

Pn`1pxq “ xPnpxq ´ Pn´1pxq, P1pxq “ x

By induction, Pnpxq must be a monic degree n polynomial in x, that is a polynomial
whose leading term is xn, with coefficient 1.
Now if α “ m

n
π, we have Pnpxq “ 2 cospnm

n
πq “ 2p´1qm. So, x “ 2 cospαq is a root

of the monic polynomial

Pnpxq ´ 2p´1qm “ 0.

If cosα is a rational, so is x “ 2 cospαq, so Corollary 1.7.7 implies that x is an integer,
implying cospαq is one of 0,˘1

2
,˘1. This implies α is one of 0,˘π

3
,˘π

2
,˘π. □

So, now we know that cos´1p1{3q and π are not rational multiples of each other,
and we want to conclude that there is an additive f with fpcos´1p1{3qq “ 1 and
fpπq “ 0. To do this, it will be convenient to adopt a more general viewpoint. Note:
if you have taken an abstract linear algebra class that works over arbitrary fields, you
may have seen much of the following material, although you may not have thought to
consider R as a vector space over Q.

Definition 1.7.10. A subset S Ă R isQ-independent if whenever q1s1`¨ ¨ ¨`qnsn “
0, with qi P Q, si P S, then q1 “ ¨ ¨ ¨ “ qn “ 0.
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For instance, if x ‰ 0, then txu is Q-independent, since qx “ 0 implies q “ 0.
Here, we call an expression of the form q1s1 ` ¨ ¨ ¨ ` qnsn, where qi P Q, a Q-linear
combination of the elements si.

Lemma 1.7.11. If a ‰ 0, then ta, bu is Q-independent if and only if b is not a
rational multiple of a.

Proof. Suppose first that b is a rational multiple of a, so b “ qa, where a P Q.
Then b ´ qa “ 0, contradicting that ta, bu is Q-independent.
Conversely, suppose that ta, bu is not Q-independent, i.e. there exist q, r P Q, not

both zero, such that qa ` rb “ 0. If r “ 0, then qa “ 0, implying that q “ 0 since
a ‰ 0. This cannot happen since q, r aren’t both zero. So, r ‰ 0. Hence, b “ p´q{rqa
is a rational multiple of a. □
So for instance, t1,

?
2u and tcos´1p1{3q, πu are both Q-independent sets.

Exercise 1.7.12. Prove that there is no triple of integers pm,n, pq except p0, 0, 0q
such that m`n

?
2`p

?
3 “ 0. Hint: move m to the other side and square both sides.

Clearing the denominators, this implies the same result where m,n, p are rational
numbers. In other words, t1,

?
2,

?
3u is a Q-linearly independent subset of R.

The connection with additive functions is the following.

Theorem 1.7.13. If S Ă R is a Q-independent set and for each s P S we have
some real number as, then there is an additive function f : R Ñ R such that fpsq “ as
for all s P S.

In other words, the values of an additive function on a Q-independent set can be
prescribed arbitrarily. In contrast, note that if qa ` rb “ 0 for some q, r P Q, then
using Exercise 1.7.4, if f is additive

0 “ fpqa ` rbq “ qfpaq ` rfpbq,

so there is a definite relationship between fpaq and fpbq; one cannot prescribe their
values independently of each other. Note that as tcos´1p1{3q, πu is Q-independent, it
follows that there is an additive function f : R ÝÑ R such that

fpcos´1p1{3qq “ 1, fpπq “ 0,

so Proposition 1.7.3 is a direct corollary.

We will now proceed toward a proof of Theorem 1.7.13. We define:

Definition 1.7.14. If S Ă R, the Q-span of S is

spanQpSq “ tq1s1 ` ¨ ¨ ¨ qnsn | qi P Q, si P Su.

For example, note that spanQpt1uq “ Q, and spanQpt1,
?
2uq is, well, the set of all

numbers that can be written as q ` r
?
2, where q, r P Q.
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Lemma 1.7.15. Suppose that S Ă R is Q-independent, and x P RzspanQpRq. Then
S Y txu is Q-independent.

Proof. Suppose that we have q1s1 ` ¨ ¨ ¨ ` qnsn ` rx “ 0, where qi, r P Q, si P S.
We want to show that all the coefficients qi and r are zero. If r “ 0, then this is a
Q-linear combination of the si, so as S is Q-independent, all the coefficients qi must
be zero, and we are done. Otherwise, if r ‰ 0, then we have

x “ p´q1{rqs1 ` ¨ ¨ ¨ ` p´qn{rqsn P spanQpRq,

a contradiction. □
Definition 1.7.16. A Q-basis for R, or alternatively a Hamel basis, is a Q-

independent set S Ă R such that spanQpSq “ R.

Lemma 1.7.17. S Ă R is a Q-basis if and only if every x P R can be written
uniquely as a Q-linear combination x “ q1s1 ` ¨ ¨ ¨ ` qnsn, where qi P Q and si P S.

Proof. Suppose S Ă R is a Q-basis and let x P R. Since x P spanQpSq, we can
write x as a Q-linear combination of elements of S. So, assume that we can write x as
such a combination in two different ways. Now, given any Q-linear combination, we
can certainly add on other elements of S multiplied by the coefficient zero, without
changing the result. So, we can assume that our two linear combinations include the
same elements of S:

x “ q1s1 ` ¨ ¨ ¨ ` qnsn “ r1s1 ` ¨ ¨ ¨ ` rnsn.

But then pq1 ´ r1qs1 ` ¨ ¨ ¨ ` pqn ´ rnqsn “ 0, so Q-independence implies that qi “ ri
for all i.
Now suppose that every x P R can be written uniquely as a Q-linear combination

x “ q1s1 ` ¨ ¨ ¨ ` qnsn, where qi P Q and si P S. Clearly, spanQpSq “ R, and since 0
can be written as a Q-linear combination with only zero coefficients, that is the only
way to write 0 as such, so S is Q-independent. □
So, do Q-bases exist? Yes, in abundance!

Theorem 1.7.18. If S Ă R is Q-independent, then there is a Q-basis T Ă R that
contains S.

Proof Sketch. The idea is simple. Start with S. If spanQpSq “ R, we’re done.
If not, take some x1 P RzspanQpSq. By Lemma 1.7.15, S Y tx1u is Q-independent.
So, now we just continue this process, each time adding some xi ` 1 outside the
span of our current set Si :“ S Y tx1, . . . , xiu, and preserving independence in every
step. One would like to say that this terminates with some S where spanQpSq “
R. However, this may not be the case: one could potentially construct an infinite
sequence x1, x2, . . . such that the Q-span of S8 :“ S Y tx1, x2, . . .u is still not R!
However, in this case one just continues as before: pick some y1 outside the span of
S8 and add it to S8, etc... This can get a little confusing, but intuitively, if one
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can keep doing this process, even after you get to infinity, or even an infinity’s worth
of infinities, eventually you should end up with some T that’s a Q-basis. If you’re
interested, there is an important tool from logic called Zorn’s Lemma that tells you
rigorously that you can do this. Look it up! □
Exercise 1.7.19 (For those who know about countability). Show that any Q-basis

for R is uncountably infinite.

Now let’s show how to use a Q-basis S to create additive functions. Given x P R,
we know we can write x uniquely as a Q-linear combination of elements of S. For
convenience, let’s write this as

x “
ÿ

siPS

qisi.

Now, it may look like there are infinitely many terms in this summatiy all but finitely
many of the coefficients qi are zero. So, this is really just a Q-linear combination as
before, but written slightly differently. Define xx, siy :“ qi, so that

x “
ÿ

siPS

xx, siysi.

That is, xx, siy is the coefficient of si in the unique Q-linear combination of elements
of S that gives you x. We often call xx, sy the s-coefficient of x or the s-coordinate of
x. For instance, if S is a Q-basis that contains 1,

?
2,

?
3, then

x5 ` 8
?
2, 1y “ 5, x5 ` 8

?
2,

?
2y “ 8, x5 ` 8

?
3,

?
3y “ 0.

Exercise 1.7.20. Explain why it is that if S is aQ-basis and s, t P S, then xs, ty “ 0
unless s “ t, in which case xs, ty “ 1.

Fact 1.7.21. If S Ă R is a Q-basis and s P S, the following function is additive:

f : R ÝÑ R, fpxq “ xx, sy

Proof. Given x, y P R, we have

x ` y “
ÿ

siPS

xx, siysi `
ÿ

siPS

xy, siysi “
ÿ

siPS

pxx, siy ` xy, siyqsi,

so by definition, xx ` y, siy “ xx, siy ` xy, siy. □
We can now prove Theorem 1.7.13, that for any Q-independent set S, we can

prescribe the values of an additive function arbitrarily on elements of S.

Proof of Theorem 1.7.13. Say S Ă R is Q-independent, and that we are
given real numbers as for every element s P S. Let T be a Q-basis containing S, as
given by Theorem 1.7.18. Given s P S Ă T , let xx, sy denote the s-coefficient of x
with respect to the Q-basis T and define

f : R ÝÑ R, fpxq “
ÿ

sPS

asxx, sy.
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By Exercise 1.7.20, fpsq “ as for all s. Additivity of f follows from Fact 1.7.21: we
leave the details as an exercise. □

Exercise 1.7.22 (For students with an analysis background). Show that if f :
R ÝÑ R is additive and continuous, then fpxq “ ax for some a P R.

A function f : R ÝÑ R is called multiplicative if

fpxyq “ fpxqfpyq, @x, y P R.
Examples include functions fpxq “ xa, where a P R.

Exercise 1.7.23. Suppose that f : R ÝÑ R is additive, and define

g : R ÝÑ R, gpxq “

#

efplog |x|q x ‰ 0

0 x “ 0
.

Show that g is multiplicative.

Exercise 1.7.24. Suppose that f : R ÝÑ R is both additive and multiplicative,
and that f is not the zero function. In this problem, we will show that the only other
option is the identity function, i.e. that fpxq “ x for all x P R.

(a) Show that fpqq “ q for all q P Q.
(b) Show that if x ě 0, then fpxq ě 0 too.
(c) Using (b), show that f is order preserving, i.e. that x ď y implies fpxq ď fpyq.
(d) Show that fpxq “ x for all x P R. Hint: you may find it useful that between

every two distinct real numbers, there’s a rational number.

Exercise 1.7.25 (For students with an analysis background). Suppose that x is
irrational. Show that the set of all numbers of the form m ` nx, where m,n P Z, is
dense in R, meaning that between any two real numbers there is a number of this
form. This set should be considered as the Z-span of t1, xu. It is obvious that the
Q-span is dense, since it contains Q, which is dense.

Exercise 1.7.26. Suppose S Ă R is a Hamel basis and that a P R, where a ‰ 1.
Show that there is some x P S with ax R S. Hint: if ax P S for all x P S, the sum
ř

i qi of the coefficients in (3) will be the same for x as it is for ax. (Why?)

In Exercise 1.7.26, if a is rational, it can never be the case that ax P S. For if so,
we’d have a ¨ x ´ 1 ¨ paxq “ 0, implying that 0 P R can be expressed as a Q-linear
combination of elements of S in more than one way: as above, and with the trivial
linear combination, in which all coefficients are zero. However, in the problem a
doesn’t have to be rational, and the question is really different.

Exercise 1.7.27. Show there is no subset S Ă R such that every x P R can be
represented uniquely as a ‘Z-linear combination’ of elements of S:

x “ q1s1 ` ¨ ¨ ¨ ` qksk, q1, . . . , qk P Z, s1, . . . , sk P S. (3)
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Hint: assume there is, and take some x P S. Write x{2 as a Z-linear combination of
elements of S.

Exercise 1.7.28. Find two disjoint subsets A,B such that AYB “ tx P R | x ą 0u,
and where both A,B are closed under addition, meaning

a ` a1 P A, for all a, a1 P A, and b ` b1 P B for all b, b1 P A.

Exercise 1.7.29. A function f : R ÝÑ R is periodic with period ℓ if fpx`ℓq “ fpxq
for all x P R. For example, sin and cos are periodic with period 2π.

(a) Suppose that f, g are periodic with periods a, b, respectively. If b is a rational
multiple of a, show that f ` g is periodic.

(b) Using a Hamel basis, show that there are periodic functions f, g : R ÝÑ R
(with different periods) such that f ` g “ id, that is

fpxq ` gpxq “ x, @x P R.
Hint: given x P R and s P S, let xx, sy be the ‘coefficient’ of s in Q-linear
combination expressing x. That is, x “

ř

sPSxx, sys. Pick some s, and let

fpxq “ xx, sys.

(c) (Harder) Can you write x ÞÑ x2 as a sum of three periodic functions?
(d) Show that x ÞÑ ex is not a sum of (any finite number of) period functions.

Exercise 1.7.30. The dihedral angles in a regular octahedron are π ´ cos´1p1{3q.
Show that a regular octahedron O is neither scissors congruent to a cube C, nor to a
regular tetrahedron T .

Figure 3. A regular octahedron, courtesy of Wikipedia.



CHAPTER 2

Spherical Geometry

2.1. Distance on the sphere

We have talked a lot about distance so far, and about realizing distances between
points in R2 by shortest paths, which are line segments. This work is physically
meaningful because R2 is a good model for the geometry of the earth, at least when
distances are small.
As a curious example, which US city do you think is closest to Dakhla, one of the

closest cities to the US in Africa? Looking at a map, it seems like a bit of a tossup
between all the cities on the eastern seaboard.

DakhlaMiami

Boston

Computing the actual distances, though, one finds that the distance from Miami to
Dakhla is 3,991 miles, while the distance from Boston to Dakhla is 3,374 miles, which
is considerably smaller! Even more strikingly, the distance from Iceland to Dakhla is
around 2800 miles, even though on the map it looks somewhat comparable.
This discussion motivates the investigation of a new kind of geometry, spherical

geometry, which more closely models the geometry of the earth when large distances
are concerned. Specifically, our model will be the radius r sphere

Sr “ tx P R3 | |x| “ ru Ă R3,

and our goal is to understand the geometry of Sr in a manner similar to our investi-
gation of the geometry of R2.
How does one define distance on Sr? Just using the usual definition of distance in

R3 doesn’t seem like a good idea, since it can only be realized using paths that go

37
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through the interior of the earth. However, we know how to measure the lengths of
paths on Sr, and we can just define the distance between two points on Sr as the
shortest length of a path between them: if p, q P Sr,

dSrpp, qq “ inf
"

lengthpγq
ˇ

ˇ γ : ra, bs ÝÑ Sr, γpaq “ p, γpbq “ q
(

.

We write ‘inf’ here so as to avoid issues about whether length minimizing paths
actually exist. However, we’ll see in a minute that they do exist, so one could write
‘min’ instead if desired.

Exercise 2.1.1. Suppose that A Ă Rn and define, for p, q P A,

dApp, qq “ inf
"

lengthpγq
ˇ

ˇ γ : ra, bs ÝÑ A, γpaq “ p, γpbq “ q
(

.

Show that the function dA satisfies all the usual properties of a metric, except that
dApp, qq may equal 8 if there is no path from p to q in A that has finite length.

Examples of A Ă Rn where dA can be infinite are ‘disconnected sets’ like the union
of two points, or the images of non-rectifiable paths like the Koch curve.
Of course, this is not a problem for Sr. We’ll find paths of finite length that join

two given points while answering another important question: what are the shortest
paths between points on Sr, so the spherical analogue of lines in R2?

Definition 2.1.2. A great circle on the sphere Sr is an intersection P XSr, where
P is a plane in R3 going through the origin.

If p and q are points on Sr, then any plane P going through 0, p, q intersects Sr in
a great circle that passes through p and q. There is a unique such plane except when
0, p, q are colinear, in which case we say that p and q are antipodes. In other words,

Proposition 2.1.3. Every pair of points p, q on Sr lies on a great circle. The great
circle is unique except if p and q are antipodes, in which case there are infinitely many
great circles passing through p and q.

Regarding two points p, q P Sr as vectors based at the origin, suppose p, q meet at
an angle θ P r0, πs. Pick a plane P through the origin containing p, q and let v be the
unit vector in P that is perpendicular to p and closest to q. Then the path

γ : r0, 2πs ÝÑ R3, γptq “ r cosptqp ` r sinptqv
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parameterizes P X Sr, and γp0q “ p while γpθq “ q. Since

length γ|r0,θs “
ż θ

0

|γ1ptq| dt “
ż θ

0

r dt “ rθ,

we see that when the angle between p, q P Sr is θ, there is a segment of a great circle
cconnecting p, q that has length rθ.
It turns out that this is actually the shortest path between p and q!

Proposition 2.1.4. If p, q are points on Sr with angle θ, any path γ from p to q
has length at least rθ, with equality only if γ is an arc of the great circle containing
p, q. In particular, the spherical distance between p, q P Sr is dSrpp, qq “ rθ.

In the proof, we will assume γ is piecewise differentiable, so that we can calculate
its length via an integral formula. In general, a continuous path γ on Sr can be
approximated by a piecewise differentiable path with almost the same length; for
instance, one can project a piecewise linear approximation to γ radially onto the
sphere. So, any continuous path with length less than θ would yield a piecewise
differentiable path with length less than θ. With a bit more work, one could also
prove the statement about equality for continuous paths, but we’ll not do so here.

Proof. It suffices to prove the proposition when γ is contained in an open hemi-
sphere around p, and in particular θ ă π{2. If not, cut γ into small pieces, and observe
that if the length of γ is less than the angle between its endpoints, the same must be
true for one of these subpaths. A similar argument reduces the ‘with equality’ part
of the proposition to this case.
Rotations around lines through the origin are isometries of R3 and preserve Sr.

They preserve the lengths of paths and the angles between vectors, and take great
circles to great circles. So using a composition of two rotations, we may assume

p “
´

r sin
´π

2
´ θ

¯

, 0, r cos
´π

2
´ θ

¯¯

, q “ pr, 0, 0q.

�(t)

x

y

z

v(t)

u(t)

p

q
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Using spherical coordinates, γ can be written as

γptq “
`

r sin uptq cos vptq, r sin uptq sin vptq, r cosuptq
˘

,

where u : ra, bs ÝÑ r0, πs and v : ra, bs ÝÑ r0, 2πq. Note that as

γpaq “
´

r sin
´π

2
´ θ

¯

, 0, r cos
´π

2
´ θ

¯¯

,

and γpbq “ pr, 0, 0q, we have

upaq “
π

2
´ θ, vpaq “

π

2
´ θ, upbq “

π

2
.

The square of the speed of γ at time t is then:

|γ1ptq|2 “
ˇ

ˇpru1 cosu cos v ´ rv1 sin u sin v, ru1 cosu sin v ` rv1 sin u cos v,´ru1 sin uq
ˇ

ˇ

2

“ pru1 cosu cos v ´ rv1 sin u sin vq2 ` pru1 cosu sin v ` rv1 sin u cos vq2`

p´ru1 sin uq2

“ pru1 cosu cos vq2 ` prv1 sin u sin vq2 ` pru1 cosu sin vq2`

prv1 sin u cos vq2 ` p´ru1 sin uq2, as the middle terms above cancel,

“ pru1 cosuq2 ` prv1 sin uq2 ` p´ru1 sin uq2, using sin2 ` cos2 “ 1,

“ pru1q2 ` prv1 sin uq2,

so putting this into the integral that we use to calculate length,

lengthpγq “
ż b

a

a

pru1ptqq2 ` prv1ptq sin uptqq2 dt

ě
ż b

a

|ru1ptq| dt

ě
ż b

a

ru1ptq dt

“ r
π

2
´ r

´π

2
´ θ

¯

“ rθ.

Moreover, we have equality above if and only if v1ptq “ 0 and u1ptq ą 0 for all t. If
this happens, vptq “ π{2 for all t, so γ lies along the great circle determined by the
xz-plane, and the condition u1ptq ą 0 means that it always goes clockwise, so it traces
out exactly the segment of the great circle between p and q. □
While the proof of Proposition 2.1.4 above used some slightly nasty calculus, here’s

a result with a simple proo that should convince you intuitively that great circles are
the correct paths to consider here.

Fact 2.1.5. Suppose that p, q P Sr and that there is a unique shortest path γ from
p to q. Then γ is a segment of a great circle.



2.1. DISTANCE ON THE SPHERE 41

Proof. Let P be a plane in R3 passing through the origin and p, q1. The reflection
through P sends γ to a path on Sr with the same endpoints that has the same length
as γ, which must then be γ, by our assumption. This means that the reflection fixes
γ, so γ1 lies along the great circle P X S. □

�

� reflected

Exercise 2.1.6. (Quite Hard) Using just that dSrpp, qq “ rθ, where θ is the angle
between p, q, taken within the interval r0, πs, prove that dSr is a metric on Sr. Hint:
the hard part here is proving a triangle inequality for the angles between vectors u, v, w
in R3, i.e. that θpu, vq ` θpv, wq ě θpu, wq. Try doing it first if u, v, w all lie in a
plane, then in general, try projecting w onto the plane spanned by u, v.

Exercise 2.1.7. Show that if five points are placed on Sr, there is a closed hemi-
sphere containing four of them. Show by example that this is not true for open
hemispheres. Here, closed means that the hemisphere includes its great circle bound-
ary, while open hemispheres don’t contain the boundary.

If a point p P Sr is given, the circle of radius s around p is the set

Cpp, sq “ tq P Sr | dSrpp, qq “ su.

Recall that the dot product p ¨ q of two points in R3 can be interpreted geometrically
as p ¨ q “ |p| ¨ |q| cos θ, where θ is the angle between p, q. As dSrpp, qq “ rθ,

dSrpp, qq “ s ðñ θ “
s

r
ðñ p ¨ q “ |p||q| cos

´s

r

¯

,

so since |p| “ |q| “ r for p, q P Sr, the circle Cpp, sq is just the intersection with Sr of
the plane P Ă R3 defined by the equation

P “ tq P R3 | p ¨ q “ r2 cosps{rqu.

Using elementary Euclidean geometry, we see that in fact Cpp, sq is a Euclidean
circle of Euclidean radius r sin s

r
around the point pr cos s

r
qp P P .
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p s

s
r

q

0

C(p, s)

P

r

Hence, the circumference of Cpp, sq is 2πr sin s
r
. So, we have proved:

Corollary 2.1.8. The circumference of a circle of radius s on Sr is 2πr sin s
r
.

Here are some exercises.

Exercise 2.1.9. Suppose that P is a plane in R3 defined by ax ` by ` cz “ d.
Show algebraically that the intersection P X Sr is either empty, a point, or a circle.

Exercise 2.1.10. Show that a circle Cpp,αq is a great circle if and only if α “ rπ
2
.

Exercise 2.1.11. The circumference of a Euclidean circle of radius s is 2πs. Show

lim
rÑ8

2πr sin
s

r
“ 2πs.

This should make sense, since at moderate scales a very large sphere (like the earth)
is almost indistinguishable from a plane.

Exercise 2.1.12 (Compare with 8.11). Show that for fixed r, we have

lim
sÑ0

2πr sin s
r

2πs
“ 1.

Explain what this means about small spherical circles, and their relationship to Eu-
clidean circles.

Exercise 2.1.13. The following is a quotation from the Bible, 1 Kings 7.23:

Then he made the molten sea; it was round, ten cubits from brim to brim, and
five cubits high. A line of thirty cubits would encircle it completely.

Let’s interpret this as describing an above-ground pool ten cubits in diameter and 30
cubits in circumference. Some doubters like to say that this is impossible, since the
ratio of circumference to diameter should be π, not 3. In a scathing rebuttal, explain
how the pool could be built exactly as specified on the surface of Sr, for some r. Hint:
you don’t need to explicitly find the appropriate r. Just argue that it exists using the
intermediate value theorem.
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2.2. Spherical isometries

The distance function dSr is a metric on Sr, giving Sr the structure of a metric
space. What are the isometries of Sr? It turns out there is a dictionary between
isometries of Sr and certain isometries of R3.

Proposition 2.2.1. Let r ą 0. Any isometry f : R3 ÝÑ R3 with fp0q “ 0
restricts to an isometry of Sr, considered with the metric dSr . Conversely, every
isometry f : Sr ÝÑ Sr is the restriction of a unique isometry of R3 fixing the origin.

Proof. If p P R3 lies in Sr, then

dp0, fppqq “ dpfp0q, fppqq “ dp0, pq “ r,

so fppq P Sr as well. Therefore, f restricts to a map of Sr. Since the same is true for
f´1, the restriction map f : Sr ÝÑ Sr is a bijection.
We now show that the restriction of f to Sr preserves dSr . If p, q P Sr, then

dSrpp, qq “ rθ, where θ is the angle between the segments 0p and 0q. By Lemma
1.2.12, as f is an isometry the angle between 0fppq and 0fpqq is θ as well. So,

dSrpp, qq “ rθ “ dSrpfppq, fpqqq,

implying that f restricts to a dSr -isometry.
Conversely, suppose we start with an isometry f : Sr ÝÑ Sr. Define

F : R3 ÝÑ R3, F pxq “
|x|
r
f

ˆ

rx

|x|

˙

.

In other words, to define F pxq we first scale the vector x so that its head lies on Sr,
then apply f , then scale the result back to its original length.

Exercise 2.2.2. Prove that dpF pxq, F pyqq “ dpx, yq for all x, y P R3.

It’s easy to see that F is a bijection - its inverse is obtained from the isometry f´1

of Sr in the same way that we obtained F from f . So, F is an isometry. □

By Theorem 1.3.1, the isometries of R3 that fix the origin are the identity, reflections
through planes containing the origin, rotations around lines through the origin, and
‘twist reflections’ that are compositions of rotations around lines through the origin
and perpendicular planes containing the origin. So, this gives a complete classification
of isometries of Sr. However, the reliance on R3 here is a bit unsatisfying, and we’ll
see that in fact the isometries of Sr can be described intrinsically, in a way that
parallels the definitions of isometries of R2.
Let’s take as an example the restriction to Sr of a reflection through a plane P Ă R3.

The plane P intersects Sr in a great circle, which we call ℓ, remembering that great
circles play the role of lines on Sr. Denoting by

Rℓ : Sr ÝÑ Sr
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the restricted reflection, we see that Rℓppq “ p whenever p P ℓ, while if q R ℓ, then
any segment of a great circle connecting q and Rℓpqq is perpendicularly bisected by
ℓ. These properties determine Rℓ, and are completely analogous to those in the
geometric definition of a reflection in R2. So, by analogy, we call Rℓ the reflection of
Sr through the great circle ℓ.

Similarly, any line l through the origin in R3 intersects Sr in a point p and its
antipode. The rotation around l by angle θ restricts to a map

Op,θ : Sr ÝÑ Sr

that fixes p and its antipode, and otherwise takes x to the unique point Op,θpxq such
that any great circle segments px and pOp,θpxq have the same length and meet with
an angle of θ, measured counterclockwise from px to pOp,θpxq.

We call this map Op,θ the rotation of Sr around p. In some sense, we should call Op,θ

a ‘rotation around both p and its antipode’, but this is too much of a mouthful.
We now have spherical versions of rotations and reflections of R2. What about

translations? In fact, a spherical rotation plays a dual role, analogous to both a
Euclidean rotation and a translation! To see why, note that a translation of R2

preserves all the lines in the direction of translation, and acts on each one as a shift.
Well, a spherical rotation Op,θ preserves all the circles Cpp, sq, where s P r0, πs, but
the circle Cpp, π{2q is a great circle, and therefore plays the role of a line on Sr! We
can also consider Op,θ as ‘shifting’ along Cpp, π{2q, except that since Cpp, π{2q closes
up we eventually get back to where we started. So, a spherical rotation Op,θ could
also be considered as a ‘spherical translation’ along the great circle Cpp, π{2q.
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Moreover, if rotations can be considered as ‘spherical translations’, then twist re-
flections are ‘spherical glide reflections’. For if p P Sr, the line through 0, p is perpen-
dicular to the plane cutting out ℓ “ Cpp, π{2q, so t(W)ist reflections are compositions

Wp,θ : Sr ÝÑ Sr, Wp,θ “ Op,θ ˝ Rℓ

of ‘spherical translations’ along ℓ and reflections through ℓ, in perfect analogy with
glide reflections in R2. We’ll refer to Wp,θ above as the twist reflection of Sr along ℓ
by angle θ.
With this new terminology, the classification of spherical isometries becomes:

Theorem 2.2.3. The only isometries of Sr are the identity, rotations around points,
and reflections and twist reflections along great circles.

Here are some exercises on spherical isometries.

Exercise 2.2.4. Show that every isometry of Sr is the product of at most three
reflections.

Exercise 2.2.5 (The antipodal map). The map A : Sr ÝÑ Sr, Appq “ ´p is called
the antipodal map, since it takes every point to its antipode.
(a) Show that A is an isometry.
(b) Where does the antipodal map appear in Theorem 2.2.3?
(c) Without using Theorem 2.2.3, show that if f : Sr ÝÑ Sr is an isometry and

p, q P Sr are antipodes, then fppq, fpqq are antipodes as well.
(d) Show that f ˝ A “ A ˝ f for every isometry f : Sr ÝÑ Sr. We summarize this

property by saying that A is central.
(e) Using Theorem 2.2.3, show that A and the identity are the only central isometries

of Sr.

Exercise 2.2.6. A metric space X is homogenous if for all x, y P X, there is an
isometry f : X ÝÑ X with fpxq “ y. Show that Rn and Sr are homogenous. Show
that t1, 2, 3u, with the metric dpx, yq “ |x ´ y|, is a non-homogenous metric space.

2.3. Spherical area and polygons

Now that we have a little familiarity with distance on the sphere Sr, what about
area? Surface area is sometimes covered in a good multivariable calculus class, and if
you’re comfortable with it you might at least remember that the surface area of the
sphere is supposed to be 4πr2. This, combined with believable facts like congruent
subsets of Sr have equal area and the area of a union of two regions of Sr with disjoint
interiors is the sum of the two component areas are all you will need here.
In search of some examples where we can calculate area, we are led to consider

spherical polygons. As great circles on the sphere play the role of lines in the plane,
it is natural to define a spherical polygon as a region on the sphere bounded by a
finite number of segments of great circles that form a loop.
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As pictured above, there are two sided spherical polygons, called lunes or bigons !
Even worse/better, a hemisphere of Sr can be considered as a polygon with one side,
or monogon; we usually plant a vertex somewhere on the great circle boundary so
that we still have the picture of edges connecting vertices, though.
A spherical polygon is proper if it is contained in an open hemisphere. For a triangle

T , properness has another interpretation. The three great circles determined by T ’s
sides divide the sphere into eight triangles, as in the picture below, and T is either
one of these six or is a union of some of them.

proper, e.g.

If T is one of the eight, then T is proper: a great circle bounding an open hemisphere
containing T can be created by slightly rotating any of the three great circles pictured.
On the other hand, if T is a union of more than one of these triangles, it will contain
a pair of antipodal points, so cannot be contained in an open hemisphere.

Exercise 2.3.1. Show that a spherical triangle T is proper if and only if all its
interior angles are less than π.

Exercise 2.3.2. Show that a proper triangle on Sr has side lengths less than πr.
Note: the converse is not true, as the complement of a proper triangle is a nonproper
triangle with the same side lengths.
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We now give a first interesting example where we can calculate area. Intuitively, a
lune with angle θ takes up a proportion of θ

2π
of the sphere, so its area should be

θ

2π
4πr2 “ 2θr2.

So, we can then work in stages. All lunes of a certain angle are congruent, i.e.
there’s an isometry of Sr taking one to the other, so they all have the same area. As
the sphere Sr is the union of 2n lunes with angle π{n and disjoint interiors, a lune
with angle θ “ π

n
must have area 4πr2{2n “ 2pπ{nqr2. Taking the union of m such

lunes, a lune with angle θ “ πm
n

has area 2pπm{nqr2. This proves the formula when
θ is rational. In general, given any angle θ, we can write θ{π using decimal notation

θ{π “ a0 `
a1
10

`
a2
100

` ¨ ¨ ¨ , where ai P Z,

and then θ “ πa0 ` π a1
10

` ¨ ¨ ¨ is a sum of rational multiples of π, so a lune with
angle θ is the union of lunes with angles that are rational multiples of π and disjoint
interiors. Summing their areas gives 2θr2.

Returning to our discussion of polygons, note that in the picture above on the
right we have a triangle T with three right angles that occupies a quarter of the
upper hemisphere. However, the clever reader will notice that is actually another
triangle pictured: the complement of T ’s interior, which has three 3π{2 angles!

Exercise 2.3.3. Given an angle α P p0, 2πq, show that there is a spherical triangle
that has α as one of its interior angles.

There is some debate whether to even include triangles like the complement of T ’s
interior in a definition of ‘polygon’, since although they are bounded by a number of
great circle segments, they are too large and curved to really look like a polygon.
We now come to the central result of this section.

Girard’s Theorem. If a proper triangle T on Sr has interior angles α, β, γ, then

AreapT q “ r2pα ` β ` γ ´ πq.

In particular, this implies that the angle sum of a spherical triangle is always greater
than π, since area must be positive. The quantity α ` β ` γ ´ π is often called the
angle excess of the triangle, since it is the amount by which the interior angle sum
exceeds the corresponding sum for Euclidean triangles.

Proof. Suppose T is a triangle on Sr with interior angles α, β, γ. Extend the
sides of T to the full great circles on which they lie. There are then two cases,
depending on whether T is proper or not.
First, assume T is proper, as pictured below.
We see six lunes that cover Sr, two each with angles α, β, and γ. Every point in

the sphere is contained in exactly one of the lunes, with the exception that points in



48 2. SPHERICAL GEOMETRY

T and in the antipodal triangle T 1 are contained in 3 lunes. So,

4πr2 “ AreapSq

“ 2 ¨ p2αr2q ` 2 ¨ p2βr2q ` 2 ¨ p2γr2q ´ 2AreapT q ´ 2AreapT 1q

“ 4r2 pα ` β ` γq ´ 4AreapT q,

where the second equality decomposes the area of S into the regions covered by
the lunes, while subtracting off twice the areas of T and T 1 to compensate for the
overcounting. Solving for AreapT q proves the proposition. □

Exercise 2.3.4. Show that in fact, the area formula in Girard’s Theorem is also
true for non-proper triangles.

Exercise 2.3.5. Using Girard’s theorem, show that if r is large, then the interior
angle sum of a small triangle (say, with unit area) on Sr is close to π. This is another
example of the philosophy that at small scales, a large sphere looks Euclidean.

Exercise 2.3.6 (SAS?). Two spherical polygons are congruent if there is an isom-
etry of Sr taking one to the other. Explain why it is that if two triangles on Sr

share two side lengths that meet at the same interior angle, then the triangles are
congruent.

If you’re interested, think about spherical analogues of the other congruence con-
ditions for Euclidean triangles. In fact, there’s also an AAA condition in spherical
geometry! This should be plausible, since Girard’s Theorem implies that you can’t
scale a triangle without altering its angles like you can in Euclidean space.

Exercise 2.3.7. (Hard) Prove the ‘spherical law of cosines’: if a proper triangle
on Sr has side lengths a, b, c, and θ is the angle opposite c, then

cos
c

r
“ cos

a

r
cos

b

r
` sin

a

r
sin

b

r
cos θ.
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2.4. Triangulating spherical polygons

If P is a polygon on Sr, a triangulation of P is a collection of triangles on Sr (as
always, with sides that are great circle segments) that union to P , and where two
triangles intersect either along an edge of both, or a vertex of both.
We saw in §1.5 that Euclidean polygons can always be triangulated. Is the same

true for proper spherical polygons? One way to try to answer this question would be
to repeat the proof that we did in the Euclidean setting, hoping that all the details
still work. Instead of attempting this, we’ll show that proper spherical polygons can
be transformed into Euclidean polygons, which can then be triangulated, and such a
Euclidean triangulation gives a triangulation of the original polygon.
The key is to study the ‘gnomonic projection’ of a hemisphere of Sr. Set

H “ tpx, y, zq P S | z ă 0u, Z “ tpx, y, zq P R3 | z “ ´1u.

The gnomonic projection is the map G : H ÝÑ Z, where if p P S, we let Gppq be the
point where the ray from 0 in the direction of p intersects the plane z “ ´1.

0

p

G(p)
z = �1

H

In coordinates, the ray from the origin through a point p “ px, y, zq can be pa-
rameterized as γptq “ ptx, ty, tzq. This ray intersects the plane at height ´1 when
tz “ ´1, so t “ ´1{z. Therefore, gnomonic projection is the map

G : H ÝÑ Z, Gpx, y, zq “
´

´
x

z
,´

y

z
,´1

¯

.

Gnomonic projection has a useful property that distinguishes it from those previously
considered: it maps great circles on S to lines in Z. For a great circle on the sphere is
the intersection PXS, where P is a plane through the origin, and gnomonic projection
maps P X S to the intersection of P with the plane Z, which is a line.
So, gnomonic projections are useful for plotting efficient aerial trajectories between

points on the earth. Here is part of a map created by gnomonic projection, when the
earth is oriented upside down so that the North Pole is p0, 0,´1q.
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Exercise 2.4.1. Gnomonic projection takes great circles to lines, while the Merca-
tor projection and stereographic projection preserve angles. Is there any way to define
a projection from part (say, a hemisphere) of Sr into R2 that has both properties?

We can now prove the following theorem.

Theorem 2.4.2. Any proper n-gon on Sr can be triangulated with n ´ 2 triangles.

Proof. Suppose that P is a proper spherical n-gon. Rotating it on Sr, we can
assume that P lies in H. Since the gnomonic projection G takes great circle segments
to line segments, the image GpP q is a Euclidean n-gon in the plane Z. So, GpP q
can be triangulated with n ´ 2 Euclidean triangles. The preimages G´1pP q of these
triangles are spherical triangles that triangulate P . □
Exercise 2.4.3. Come up with an example of a (non-proper) spherical quadrilat-

eral that cannot be triangulated. Remember, for us every triangle in a triangulation
has vertices that are vertices of the original polygon.

2.5. Area of spherical polygons and Euler characteristic

Girard’s theorem gave an amazing formula for the area of a spherical polygon in
terms of its angles. Our first goal in this section is to generalize this to an area
formula for proper spherical polygons.

Theorem 2.5.1. If P is a proper n-gon on Sr with interior angle sum s, then

AreapP q “ r2 ps ´ pn ´ 2qπq .

Recall that the interior angle sum of a Euclidean n-gon is pn ´ 2qπ. So, just as in
Girard’s theorem, the corollary is stating that area is r2 times the angle excess.
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Proof. We’d like to use Girard’s theorem, so it would be convenient to have a
triangulation of P . Rotating P does not change its angles or its area, so we may
assume that this is the southern hemisphere. Gnomonic projection then sends P
to a Euclidean polygon, which can be triangulated. The gnomonic inverse of this
triangulation is then a triangulation T1 Y ¨ ¨ ¨ Y Tn´2 “ P. Let si be the interior angle
sum of Ti. As

ř

i si “ s, we have

AreapP q “
n´2
ÿ

i“1

AreapTiq “
n´2
ÿ

i“1

r2psi ´ πq “ r2 ps ´ pn ´ 2qπq . □

Exercise 2.5.2. Show directly that the conclusion of Theorem 2.5.1 holds for lunes
and monogons.

Exercise 2.5.3. Show that the conclusion of Theorem 2.5.1 holds for polygons P
that are complements of proper polygons.

This is a surprising application to a certain invariant of polyhedra in R3. If P is a
polyhedron, define the Euler characteristic of P to be the number

χpP q “ V ´ E ` F,

where V,E, F are the numbers of vertices, edges and faces of P , respectively. Let’s
compute the Euler characteristic of some of the polyhedra below, that you may re-
member from the section on scissors congruence.
The tetrahedron has 4 vertices, 6 edges and 4 faces, so χ “ 4 ´ 6 ` 4 “ 2. The

cube has 8 vertices, 12 edges and 6 faces, so χ “ 8 ´ 12 ` 6 “ 2. In fact, you can
compute by hand (although this will be hard for the rabbitohedron) that the Euler
characteristic of any of the polyhedra pictured is 2!

For convex polyhedra P , we can explain this using spherical area. Position P so
that it contains the origin, and let r be large enough so that P does not intersect
Sr. Then radially projecting the vertices, edges and faces of P from the origin gives
a proper tiling of Sr, by which we mean a collection of proper spherical polygons on
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Sr whose union in Sr, and where the intersection of two given polygons is either a
vertex or an edge of each.

Exercise 2.5.4. Using convexity, explain why the radial projection from the bound-
ary of P to Sr is a bijection, and conclude that the numbers of faces, edges and vertices
of the spherical tiling are the same as those of P .

Exercise 2.5.5. If P is not convex, one can still project its edges and vertices onto
Sr, but the projections of two edges may cross, so the induced tiling of Sr looks like
it has more vertices than P does. Try to draw a picture of this happening.

Like a polyhedron, a tiling of Sr has an Euler characteristic χ “ V ´E `F , where
the Euclidean polygons and edges are replaced with their spherical analogues.

Theorem 2.5.6. The Euler characteristic of a proper tiling of Sr is 2.

Proof. The interior angles around a vertex of the tiling sum to 2π, so the sum
of all interior angles in all the polygons is 2πV . Also, every edge is contained in two
polygons, so E is half the sum of the numbers of sides npP q in the polygons P . So,
if spP q is the interior angle sum of P , we have

4πr2 “ AreapSrq

“
ÿ

polygons P

AreapP q

“
ÿ

polygons P

r2
´

spP q ´ πpnpP q ´ 2q
¯

, by Corollary 2.5.1

“ r2

˜

ÿ

polygons P

spP q ´ π
ÿ

polygons P

npP q ` π
ÿ

polygons P

2

¸

“ r2p2πV ´ 2πE ` 2πF q

“ 2πr2χ,

This implies that χ “ 2. □
Exercise 2.5.7. Suppose that P Ă Sr is a proper polygon. A tiling of P is a

collection of proper1 spherical polygons whose union is P , and where any two of the
polygons intersect in either a vertex or an edge of both. Show that any tiling of P
has Euler characteristic 1. Hint: explain why it suffices to just repeat the proof above,
but using Exercise 2.5.3 instead of Corollary 2.5.1.

By Exercise 2.5.4, the numbers of vertices, edges and faces of a convex polyhedron
are the same as those of its associated spherical tiling, so we obtain:

Corollary 2.5.8. The Euler characteristic of a convex polyhedron is 2.

1It’s not really necessary to say proper here, since all the polygons are subsets of P , which is
proper, so they’re automatically proper too.
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In fact, convexity here is not really necessary. It suffices only to assume that the
polyhedron does not have ‘holes’ – this is the case for the rabbit on the left, while the
polyhedron on the right has three holes. Intuitively, the surface of a polyhedron with
no holes can be smoothed out along the surface of a sphere, and the faces can then
be straighten to spherical polygons, so that the preceding argument will still work.

The number of holes of a polyhedron is usually called its genus. In general, it turns
out that the Euler characteristic of a genus g polyhedron is 2 ´ 2g! This is a little
tricky to prove (and state precisely) in general, but you can verify it in special cases.

Exercise 2.5.9. For each g, describe the construction of a specific polyhedron with
g holes in which you can easily show that the Euler characteristic is 2 ´ 2g.

2.6. Tilings of R2

We say that two subsets A,B of a metric space X are congruent if there is an
isometry f : X ÝÑ X with fpAq “ B.

Exercise 2.6.1. If two triangles T, T 1 in R2 have the same side lengths, they are
congruent. Hint: by Exercise 1.1.11, the two triangles must also have the same angles.
You might try composing a translation with a suitable rotation and reflection.

A monohedral tiling of R2 is a collection of congruent polygons P1, P2, . . . with
disjoint interiors that union to R2. Some examples are pictured below. The colors
and the bees are unimportant to the mathematics.
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On the left is a tiling by congruent pentagons, the middle tiling is by congruent
9-gons, and the honeycomb in the last picture is an example in nature of part of a
tiling of R2 by regular hexagons.

Exercise 2.6.2. Show that if T is any triangle, there is a monohedral tiling of R2

in which all the polygons are congruent to T . Be careful here... you have to start with
an arbitrary triangle and explain why the tiling exists. Don’t just draw a few triangles
and say they’re all congruent.

Exercise 2.6.3 (Harder). Show that for any quadrilateral Q, there is a monohedral
tiling of R2 in which all the polygons are congruent to Q. Hint: one way to do this is
to combine two copies of your given quadrilateral into a hexagon that more obviously
tiles the plane.

Exercise 2.6.4. Show that there is a monohedral tiling of R2 in which all the
polygons are regular n-gons if and only if n “ 3, 4, 6. Hint: look at the interior angles
at a vertex in the tiling.

For each n, there is a wealth of tilings of the plane by congruent n-gons. When
n “ 3, 4, this is clear from Exercises 2.6.2 and 2.6.3. In general, one can start with
the tiling of the plane by equilateral triangles pictured below, cut out a polygonal
piece from the one side of each triangle and glue it on one of the other sides.

If this is done properly as above, the result is a monohedral tiling by p2s` 1q-gons,
where s is the number of sides with which we replaced one side of each equilateral
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triangle. For example, above s “ 4 and the resulting tiling is by 9-gons. The only
constraint in this construction is that s ě 2; so this produces infinitely many ‘distinct’
tilings by congruent n-gons whenever n “ 2s ` 1 ě 5 is odd.

Exercise 2.6.5. With a similar construction, produce tilings by congruent n-gons
whenever n ě 4 is even.

What about monohedral tilings by convex n-gons? As mentioned above, any tri-
angle or quadrilateral can be used to tile the plane, so the question is only interesting
when n ě 5. Rienhardt (1918) gave a complete classification of the convex hexagons
that tile the plane: they fall into three families, defined using conditions on angles
and side length. He also found five families of convex pentagonal tilings. This was the
state-of-the-art for convex pentagonal tilings until 1968, when Kershner found some
additional families and claimed that his list was complete.
In 1975, Martin Gardner wrote an expository article on convex pentagonal tilings in

Scientific American that included Kershner’s list. Soon afterwards, a reader named
Richard James wrote in with a new tiling, showing Kershner’s claim of completeness
to be false! Even better, in 1977 a reader named Marjorie Rice, a stay-at-home mother
and amateur mathematician living in San Diego, discovered 4 additional families of
convex monohedral pentagonal tilings. After Rolf Stein discovered one additional
family in 1985, the total number of known families of convex pentagonal tilings was
14. A representative of each family is pictured below.

This was the state of the art until 2015, when Mann, McLoud, and Von Derau
found a fifteenth tiling, pictured below.
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The problem was then settled in July 2017, when Michael Rao showed that the
resulting list of fifteen families is complete!

Perhaps surprisingly, there are no other convex monohedral tilings.

Theorem 2.6.6. There is no monohedral tiling of R2 by convex n-gons when n ą 6.

The rest of the section is devoted to the proof of Theorem 2.6.6. Suppose that P is
a polygon in R2. A tiling of P is what you would expect: it is a collection of polygons,
that intersect in vertices or edges, and that union to P . Triangulations are examples,
but in general a tiling may have vertices in the interior of P and its polygons may
not be triangles, as in the second example pictured below.

The definition of Euler characteristic χ “ V ´ E ` F makes perfect sense for a
tiling of a Euclidean polygon.

Lemma 2.6.7. For any tiling of a Euclidean polygon P , χpP q “ 1.

Proof. Use the inverse of gnomonic projection to transform a tiling of P into a
tiling of a proper spherical polygon Q. Then Exercise 2.5.7 says that χpP q “ 1. □
Exercise 2.6.8. Instead of polygons, one could tile more general regions of the

plane. What do you think the Euler characteristic records? Try out the following
examples to get some intuition.
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We are now ready to start the proof of the theorem above.

Proof of Theorem 2.6.6. Suppose that we have a tiling of R2 by polygons
that are all congruent to an n-gon P . We want to show that n ď 6.
Fix r ą 0, and let T 1

r be the union of all polygons in the tiling that intersect the
disc Dr “ tx P R2 | |x| ď ru, as pictured below.

T 0
r

We’d like to say that T 1
r is a polygon, and indeed, it looks like the polygon in the

picture above. But what some of the polygons in T 1
r enclose other polygons of the

tiling that don’t touch Dr, as in the following picture? Then T 1
r won’t be a polygon,

as it will have a hole in the middle of it.

Dr

in T 0
r

not in T 0
r

It’s true that this picture doesn’t look much like a monohedral tiling, but it’s hard to
say that something like this never happens. So instead, we set Tr to be the union of
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all polygons in the tiling that either lie in T 1
r or are enclosed by a loop in T 1

r. Then
any ‘holes’ in T 1

r are filled in when we look at Tr, so Tr is a polygon. (Try to write a
more formal argument for this if you like.) Therefore, χpTrq “ 1.
Let V, F,E be the number of vertices, polygons (faces) and edges in the tiling of Tr

induced by our tiling of R2. An exterior vertex is one that is a vertex of the polygon
Tr, while an interior vertex is a vertex of one of the polygons in our tiling of Tr that
lies in the interior of Tr. Let the number of interior/exterior vertices be Vint and Vext,
so that we have V “ Vint ` Vext. The total angle sum of all the polygons in Tr is at
most 2πV , since each interior vertex contributes 2π while the other vertices contribute
less than 2π. On the other hand, the angle sum of each polygon is pn ´ 2qπ, so the
interior angle sum in Tr is pn ´ 2qπF . Therefore,

pn ´ 2qπF ď 2πV ùñ
n ´ 2

2
F ď V.

As the polygons in Tr are convex, their angles are less than π. So, each interior vertex
in Tr is adjacent to at least three edges, implying

3Vint ď 2E.

We now use these inequalities in the definition of the Euler characteristic of Tr, which
we said above is 1, giving

1 “ χpTrq “ V ´ E ` F ď V ´
3

2
Vint `

2

5
V “

ˆ

n

n ´ 2
´

3

2

Vint

V

˙

V.

The key now is in the following claim:

Claim 2.6.9. As r ÝÑ 8, we have Vint

V
ÝÑ 1.

Assuming the claim for a minute, the inequality above says that when r is large,
we have 0 ď p n

n´2
´ 3

2
q, so n{pn ´ 2q ě 3{2, and solving for n we have n ď 6. So, this

finishes the proof of the theorem. □

It remains to prove the claim.

Proof of Claim 2.6.9. Let’s call a polygon in our tiling of Tr an exterior poly-
gon if it shares an edge with Tr, and an interior polygon otherwise. Let’s indicate
the number of interior polygons by Fint, and exterior polygons by Fext. The intuition
here is that Vint and Fint should both be proportional to the area πr2 of Dr, while
Vex and Fext should be proportional to the circumference 2πr of Dr, and for large r,
we have πr2 ąą 2πr.
Let D be bigger than the diameter of the polygon P to which all our tiles are

congruent. Then the union of all interior polygons of Tr must contain the disk of
radius R ´ D around the origin. Thus,

AreapP qFint ě πpR ´ Dq2 .
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Similarly, every exterior polygon lies outside the disk of radius R ´ D, and within a
disk of radius R ` D, so we have

AreapP qFext ď π
`

pR ` Dq2 ´ pR ´ Dq2
˘

“ 4πDR .

Summing the number of vertices from each tile over all of the interior tiles, we end
up counting each vertex according to the number of edges touching it. Since the sum
of the angles formed at each vertex is 2π, this number is at most 2π divided by the
minimum angle of P . Denoting this last quantity by αpP q, we have

n ¨ Fint ď
2π

αpP q
Vint .

We may do the same count for the exterior tiles, where we may use the simpler
observation that each exterior vertex is counted at least once when we sum the number
of vertices over the exterior tiles. Thus

n ¨ Fext ě Vext .

Putting this info together, we have

Vint ě
n αpP q
2π

¨
πpR ´ Dq2

AreapP q
“

n αpP q
2AreapP q

pR ´ Dq2

Vext ď n ¨
4πDR

AreapP q
“

4πnD

AreapP q
R .

This means we have

Vext

Vint

ď
4πnD

AreapP qR

nαpP q
2AreapP qpR ´ Dq2

“
8πD

αpP q
R

pR ´ Dq2

which goes to zero as R Ñ 8. Thus we have

Vint

Vint ` Vext

“
1

1 ` Vext

Vint

Ñ 1

as R Ñ 8, as desired.
□

2.7. Pick’s Theorem

An integer point in R2 is a point pn,mq where n,m P Z. The set of all integer
points is denoted by Z2 Ă R2. An integer polygon is a polygon all of whose vertices
are integer points. This section is devoted to the following theorem, which was proven
by Georg Pick in 1899.

Theorem 2.7.1 (Pick’s Theorem). Let P Ă R2 be an integer polygon. Let I be
the number of integer points that lie in the interior of P , and let B be the number of
integer points on the boundary of P . Then AreapP q “ I ` B{2 ´ 1.
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As an example, in the picture, we have I “ 40 and B “ 19, so the area is 48.5. This
result is rather surprising! It’s not too hard to believe that integer polygons large
area should contain lots of integer points, perhaps even a number of integer points
that’s roughly proportional to the area. However, the precise formula in the theorem
is a much more subtle result. vertices on the boundary As a warmup, try to draw
some examples where you know how to compute area, using graph paper if you have
it, and verify that the theorem holds for your examples! Once you’ve done that, let’s
work on the proof.

An integer polygon is minimal if the only integer points it contains are its vertices.
For a minimal integer triangle, the right hand side in Pick’s Theorem is

I ` B{2 ´ 1 “ 0 ` 3{2 ´ 1 “
1

2
.

Our first step is to show that Pick’s Theorem is true for such triangles.

Lemma 2.7.2. Suppose ∆ Ă R2 is a minimal integer triangle. Then Areap∆q “ 1
2
.

Proof of Lemma 2.7.2. For notational convenience, let’s translate ∆ so that
its vertices are 0, p, q, where p, q P Z2. Let m “ 1

2
pp ` qq be the midpoint of the

segment pq. Then the rotation by π around p has the formula

Om,π : R2 ÝÑ R2, Om,πpxq “ 2m ´ x “ p ` q ´ x.

Since p, q P Z2, so is p ` q. Therefore x P Z2 if and only if Om,πpxq P Z2. It follows
that Om,πp∆q is a minimal integer triangle. The union of ∆ and Om,πp∆q is the
parallelogram P with vertices 0, p, q, p ` q. Note that all vertices of P are integer
points, and there are no other integer points in P .
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It suffices to show that AreapP q “ 1. Tile the plane with parallelograms congruent
to P . The parallelograms in our tiling all have the form Tip`jqpP q, where i, j P Z.
Since ip ` jq is an integer point, each Tip`jqpP q has vertices that are integer points,
and no other integer points. So, we have a tiling of the plane by parallelograms where
the integer points in R2 are exactly the vertices of the tiling.
Since p1, 0q is an integer point, there is a parallelogram Tap`bqpP q in our tiling that

has p1, 0q as a vertex, where here a, b P Z play the role of i, j above. Moreover,
we can assume that p1, 0q is the translation by ap ` bq of the vertex 0 of P . So,
ap ` bq “ p1, 0q. Similarly, there are c, d P Z such that cp ` dq “ p0, 1q. Then

`

p q
˘

ˆ

a c
b d

˙

“

ˆ

1 0
0 1

˙

,

where pp qq is the matrix with columns p and q. So,

1 “ det

ˆ

1 0
0 1

˙

“ det
`

p q
˘

det

ˆ

a c
b d

˙

,

and both determinants on the right hand side are integers, so they are both ˘1. In
particular, Exercise 1.1.10 says that AreapP q “ | det

`

p q
˘

| “ 1. □

To deduce Pick’s Theorem from the Lemma 2.7.2, we need to show:

Lemma 2.7.3. Let P Ă R2 be a polygon whose vertices are integer points. Then P
can be tiled by minimal integer triangles.

Proof. Let’s first do the proof when our polygon is a triangle ∆. Here, the
argument is by strong induction on badness of ∆, which we define to be the number
of integer points that lie in ∆ but are not vertices of ∆. If the badness of ∆ is zero,
then ∆ is a minimal integer triangle, and we are done. For the inductive case, suppose
the claim holds for integer triangles P with badness less than n, and take an integer
triangle ∆ with badness n. Pick some integer point q in ∆ that is not a vertex. If q
lies on an edge of ∆, split ∆ along the segment connecting q to the opposite vertex
of ∆, into two integer triangles with smaller badness than ∆. By induction, these
triangles can be tiled by minimal integer triangles. If q lies in the interior of ∆, split ∆
along the line segments connected q to the vertices of ∆, giving three integer triangles
with smaller badness than ∆. Applying the induction hypothesis again, these can be
tiled by minimal integer triangles.
For general integer polygons P , triangulate P and apply the previous case. □

We can now prove Pick’s Theorem. Let P Ă R2 be an integer polygon. Using
Lemma 2.7.3, tile P by minimal integer triangles, and let V,E, F be the numbers of
vertices, edges and faces of the tiling. Then we have V ´E `F “ 1 by Lemma 2.6.7.
Since all the tiles have integer vertices, and no other integer points, the vertices of
the tiling are exactly the integer points in P , so V “ I ` B.
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The number of edges on the boundary of P is B, since it is the same as the number
of vertices on the boundary of P . We claim

3F “ 2pE ´ Bq ` B, ùñ E “
1

2
p3F ` Bq

To see this, note that each side counts the number of pairs p∆, eq, where ∆ is a
triangle in our tiling, and e is one of its edges. On the left side, we pick ∆ first out of
F possibilities, and then there are 3 choices for e. On the right, we pick e first. There
are E ´B edges e in the interior of P , and each such edge has two adjacent triangles.
And there are B edges on the boundary of P , each adjacent to one triangle.
Summing up, we get

1 “ V ´ E ` F “ I ` B ´
1

2
p3F ` Bq ` F “ I `

B

2
´

1

2
F.

But by Lemma 2.7.2, we have A “ F {2, implying that F “ 2A, and hence

1 “ I ` B{2 ´ A, ùñ A “ I ` B{2 ´ 1.

2.7.1. Exercises.

Exercise 2.7.4 (Reeve tetrahedra, see [?]). Given r P N, show that the tetrahedron
with vertices p0, 0, 0q, p1, 0, 0q, p0, 1, 0q, and p1, 1, rq contains no integer points of R3

other than its vertices. Calculate the volume of this tetrahedron, and explain why no
exact analogue of Pick’s Theorem holds for integer polyhedra in R3.

Exercise 2.7.5. Figure out how to replace the last paragraph of the proof of
Lemma 2.7.2 with an argument of the following form. Take r large, and look at the
disc Dr of radius r around the origin. Let Nr be the number of parallelograms in the
constructed tiling that intersect Dr, and let Ir “ |Z2 X Dr|. Arguing as in proof of
Claim 2.6.9, show that we have:
(a) limrÑ8 AreapDrq{Ir “ 1,
(b) limrÑ8 AreapDrq{Nr “ AreapP q,
(c) limrÑ8 Ir{Nr “ 1.
Then conclude that AreapP q “ 1.

Exercise 2.7.6. Suppose that P is a (possibly non-integer) polygon in R2 with
vertices pxi, yiq, where i “ 1, . . . , n, and define pxn`1, yn`1q :“ px0, y0q.

(a) Show that AreapAq “
řn

i“1pyi ` yi`1qpxi ´ xi`1q, Hint: compute the area of the
trapezoid with vertices pxi, 0q, pxi`1, 0q, pxi`1, yi`1q, pxi, yiq.

(b) Using (a), show that AreapAq “
řn

i“1 det

ˆ

xi xi`1

yi yi`1

˙

.

Exercise 2.7.7. Show that there is no equilateral integer triangle in R2.

Exercise 2.7.8 (Blichfeldt’s Theorem). Suppose that X Ă R2 is a subset with area
A. Show that there is a translation Tv : R2 ÝÑ R2 such that TvpXq contains at least
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A integer points. Hint: first define ra, cs ˆ rc, ds :“ tpx, yq P R2 | x P ra, bs, y P rc, dsu,
which is a rectangle in R2. For each pair of integers i, j, consider

Xij “ X X pri, i ` 1s ˆ rj, j ` 1sq,

so in other words, Xij is just the part of X that lies in the unit square whose lower left
corner is pi, jq. Show that there is a point in the square r0, 1s ˆ r0, 1s that is contained
in T´pi,jqpXi,jq for at least rAs different choices of pi, jq.

Let C Ă R2. We say that C is centrally symmetric if whenever x P C, then ´x P C.
We say C is convex if whenever x, y P C, the line segment xy Ă C.

Theorem 2.7.9 (Minkowski). Any centrally symmetric, convex subset C Ă R2 with
area bigger than 4 contains a nonzero integer point.

To get some intuition for the theorem, note that all three conditions on C are
necessary if you want to ensure that there’s a nonzero integer point in C. Below, the
first picture shows a subset C with area 4 that is centrally symmetric and convex,
but only contains one integer point, as long as you do not include the boundary of
the square in the subset C. The second picture is convex, has area bigger than 4,
but isn’t centrally symmetric. The third picture is centrally symmetry and has area
bigger than 4, but isn’t convex.

Exercise 2.7.10. Prove Minkowski’s Theorem. Hint: the set
1

2
C :“ tp1{2qv | v P Cu

has area bigger than 1, since when you scale a shape by r, the area scales by r2. Show
that there are points p, q P C such that v “ p{2 ´ q{2 is an integer point, and prove
that v P C. Use Blichfeldt’s Theorem.

Exercise 2.7.11. In class, we proved that every minimal integer triangle in R2 has
area 1{2. Here’s another way to prove that lemma, using Minkowski’s Theorem.
(a) If ∆ is an integer triangle, show that Areap∆q ě 1

2
, using that determinant

exercise from the first HW assignment.
(b) Suppose ∆ is a minimal integer triangle. Construct an integer parallelogram Q

tiled by 8 copies of ∆ such that Q contains a single integer point in its interior.
Using Minkowski’s Theorem, show that Areap∆q ď 1

2
.





CHAPTER 3

Hyperbolic geometry

3.1. Euclid’s axioms

Modern geometry, and in some sense modern mathematics, began with Euclid
around 300 BC. Until Euclid, geometry operated on an intuitive level and the concept
of a rigorous ‘proof’ was not codified. Euclid’s book The Elements was a first attempt
to set down an axiom-theorem framework for plane geometry. See [?] for an English
translation, and Hartshorne [?] for a discussion of how Euclid’s work relates to more
modern work in geometry.
Euclid’s book starts by defining common geometric terms like points, lines, right

angles and circles, but in an abstract context without mentioning the Euclidean plane.
He then introduces five axioms1 that constrain how these objects behave.

1. “To draw a straight line from any point to any point.”
2. “To extend a line segment continuously in a straight line.”
3. “To describe a circle with any center and radius2.”
4. “That all right angles are equal to one another.”
5. The parallel postulate: “That, if a straight line falling on two straight lines make

the interior angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which are the angles less than
the two right angles.”

The meaning of the parallel postulate is that if the angles α, β below sum to less than
π then the lines m and n intersect on the indicated side of ℓ.

↵

�
intersection

`

m

n

1In most translations of The Elements, the five axioms listed above are called postulates. We’ll
use the more modern term ‘axiom’ here, except when referring to the parallel postulate, given the
long history of that name and its alliterative appeal.

2Here, a radius for a circle is interpreted as a straight line segment starting at the center of the
circle and terminating on the circle, rather than as a number.

65
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A more succint alternative to the parallel postulate is Playfair’s axiom, which is
equivalent to it in the presence of the other four axioms. It was popularized by the
mathematician John Playfair in a 1795 treatise on Euclidean geometry.

(P) “If a point p does not lie on a line ℓ, there is a unique line passing through p
that is parallel to ℓ.”

Euclid’s axiom system above is not quite rigorous by modern standards. For in-
stance, Proposition 1 in Book 1 is “To construct an equilateral triangle on a given
finite straight line”. In modern language, Euclid is saying that any line segment is
a side of some equilateral triangle. To prove this, Euclid takes a line segment with
endpoints p, q, and draws circles centered at p, q, respectively, where the line segment
pq is a radius of each circle. He then sets z to be an intersection point of the two
circles, and says that p, q, z is an equilateral triangle. However, there is no axiom
above that says that guarantees that the circles above intersect.

Exercise 3.1.1. Imagine a version of plane geometry where the ‘plane’ is the subset
Q2 Ă R2 of points with rational coordinates. Explain why all of Euclid’s axioms hold
in Q2, at least when suitably interpreted. Then show there is no equilateral triangle
that has the segment from p0, 0q to p1, 0q as one of its sides.

Euclid’s axioms were invented to characterize the geometry of the plane, so they
should not hold for spherical geometry. However, since the axiom system isn’t com-
pletely rigorous, it is a bit difficult to say which ones fail. If Sr is the sphere of radius
r in R3, and we define a ‘straight line’ on Sr to be a great circle, then Axiom 1 holds.
Axiom 2 holds in a certain sense, since any segment of a great circle can be extended
in both directions to give the entire great circle, but it is not clear that Euclid would
approve of this interpretation. Axiom 3 is true in the sense that given any p on the
sphere and any s ą 0, we can construct the metric circle Cpp, sq of radius s, as defined
in §2.1. However, this circle degenerates to a point if s “ nπr, n P N, which probably
violates Euclid’s earlier definition of a circle as a type of (non-straight) line. Alter-
natively, to Euclid a ‘radius’ of a circle should really be a line segment, and if one
attempts to construct a circle on Sr using as a radius a line segment of length bigger
than πr, the radius will intersect the circle at least twice, which Euclid may not want
to allow. Some of the propositions in The Elements are indeed wrong on a sphere.
For example, Proposition 32 in Book 1 states that the interior angles of a triangle
sum to π. On a sphere, this contradicts Girard’s Theorem, see §2.3. Propositions 16
is the first result in Euclid’s work that fails for spherical geometry. The reason the
proof fails is not related to the failure of axioms, though. Rather, it fails because
Euclid makes an additional assumption about how lines should behave in a plane.

Historically, the parallel postulate was consider less self-evident than the first four
axioms, and a great deal of effort was made to prove it using the other axioms. The
first recorded such attempt was by Ptolemy (90-168). Proclus (410-485) explained
why Ptolemy’s proof was false, then gave a false proof of his own. Ibn al-Haytham
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(965-1039) gave another false proof, but essentially invented the notion of an ‘isome-
try’ while doing so. Later false proofs were also given by Nasir al-Din al-Tusi (1201-
1274), Giordano Vitale (1633-1711) and Girolamo Saccheri (1667-1733).
Around 1830 it was shown by Lobachevsky, Bolyai and Gauss (independently) that

there is a geometry that satisfies all of Euclid’s axioms except the parallel postulate,
and unlike with the sphere, is intuitively a planar geometry. This geometry is now
called the hyperbolic plane, and written H2. We’ll build up hyperbolic geometry in
stages – in this section, we will introduce it as a set and describe hyperbolic lines,
noting that Playfair’s axiom fails. Later, we’ll see that H2 can be described as a
metric space in which ‘shortest paths’ between points in H2 lie along hyperbolic lines.

Definition 3.1.2. The hyperbolic plane is defined to be the upper half plane

H2 “ tpx, yq P R2 | y ą 0u Ă R2.

A hyperbolic line is the intersection ℓ X H2, where ℓ is either a line or a circle in R2

that intersects the x-axis orthogonally.

H
2

x-axis

As in Euclidean geometry, two hyperbolic lines are parallel if they don’t intersect.
Playfair’s axiom fails for H2: if ℓ is a hyperbolic line and x P H2 does not lie on
ℓ, there are infinitely many hyperbolic lines through x that are parallel to ℓ. For
instance, in the following picture many hyperbolic lines are drawn through p that do
not intersect the given hyperbolic line ℓ.

p`

Exercise 3.1.3. Show with an example that the parallel postulate fails for H2.
Remember, ‘straight line’ now means hyperbolic line.

3.2. Lircles

In §3.1, we introduced the hyperbolic plane, noting that hyperbolic lines are the
intersections with H2 of lines or circles perpendicular to the x-axis. While it may
seem strange to have this two-case definition of a hyperbolic line, we’ll see in this
section that a line can be considered as a degenerate version of a circle, where the
center of the circle is at infinity. To this end, we define:
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Definition 3.2.1. A lircle in R2 is a subset that is either a line or a circle.

Here’s one way to justify having a common term for lines and circles. Fix x, y P R2.
Any point z on the perpendicular bisector to xy is the center of a circle passing through
both x and y. As z Ñ 8 in either direction, the circle it determines converges to the
line through x and y. So, lines are ‘circles centered at infinity’.

1 z

x

y

Alternatively, consider quadratic equations of the form

ax2 ` ay2 ` bx ` cy ` d “ 0, (4)

where a, b, c, d P R. We call the equation degenerate if it has no solutions, a single
solution, or if every px, yq P R2 is a solution. For example, the three equations

x2 ` y2 ` 1 “ 0, x2 ` y2 “ 0, 0 “ 0

are all degenerate, and have solution sets that are empty, a single point, and all of
R2, respectively.

Fact 3.2.2. Lircles are exactly the solution sets of nondegenerate equations

ax2 ` ay2 ` bx ` cy ` d “ 0. (5)

The solution set is a line if a “ 0, and a circle otherwise.

Proof. First, note that any line is the solution set of a linear equation

bx ` cy ` d “ 0,

while a circle with center pa, bq and radius r is the solution set of

px ´ aq2 ` py ´ bq2 “ r2 ðñ x2 ` y2 ´ 2xa ´ 2by ` pa2 ` b2 ´ r2q “ 0,

which has the desired form.
Conversely, consider an equation ax2 ` ay2 ` bx ` cy ` d “ 0 as above. Suppose

first that a “ 0. If b “ c “ 0, the equation is degenerate, as its solution set is either
all of R2 or is empty, depending on whether d “ 0 or not. Otherwise, the solution set
is a line. So, we may now assume that a ‰ 0. Dividing by a, the left side becomes

x2 ` y2 `
b

a
x `

c

a
y `

d

a
“

ˆ

x `
b

2a

˙2

´

ˆ

b

2a

˙2

`
´

y `
c

2a

¯2

´
´ c

2a

¯2

`
d

a
,
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so the equation ax2 ` ay2 ` bx ` cy ` d “ 0 is equivalent to
ˆ

x `
b

2a

˙2

`
´

y `
c

2a

¯2

“

ˆ

b

2a

˙2

`
´ c

2a

¯2

´
d

a
.

If the right side is zero, this equation has a single solution, so our original equation is
degenerate. Otherwise, the solution set is a circle centered at q “

`

´ b
2a
,´ c

2a

˘

whose
radius is the square root of the right hand side. □
Finally, having a blanket term for both also allows for simpler statements of some

geometric facts.

Lemma 3.2.3. If x, y, z P R2 are distinct, there is a unique lircle through x, y, z.

Proof. If x, y, z are collinear, then the line containing them is the unique lircle
containing them. Otherwise, let ℓ and m be the perpendicular bisectors of xy and
yz. Since xy and yz are not collinear, ℓ and m are not parallel, so they intersect at
a point p P R2.

x

y
z

p

` m

The point p is equidistant from x, y, z, so there is a circle with center p through
x, y, z. The center of a circle containing x, y, z must lie on both the perpendicular
bisector of xy and the perpendicular bisector of xz, so the circle above is the unique
circle containing all three points. □
We can now show that the hyperbolic plane satisfies the first of Euclid’s axioms.

Proposition 3.2.4. If x, y P H2, there is a unique hyperbolic line through x, y.

Proof. Let z be the reflection of x over the x-axis. By Exercise 3.2.4, there is a
unique lircle C through x, y, z. If C is a line, it contains x, z, while if C is a circle, its
center lies on the perpendicular bisector of xz, i.e. the x-axis. So, in both cases C is
perpendicular to the x-axis, and intersects H2 in a hyperbolic line.
The hyperbolic line through x, y is unique: any lircle perpendicular to the x-axis is

preserved by the reflection over the x-axis, so contains z, and therefore is C above. □
Exercise 3.2.5. Suppose that lircles ℓ, ℓ1 intersect at two points x, y P R2. Show

that the angles of intersection at x, y are equal. In particular, ℓ, ℓ1 are perpendicular
at x if and only if they are perpendicular at y.
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3.3. Inversions

In order to say anything useful about the hyperbolic plane, we’ll need to better
understand lircles in R2. The crucial ingredient is a transformation of the plane
called an inversion, which one can think of as a ‘reflection’ through a circle.

Definition 3.3.1. If C is a circle centered at q P R2, the inversion through C is

iC : R2ztqu ÝÑ R2ztqu,

where if C has radius r, we define iCppq to be the point on the ray from q in the
direction of p such that |iCppq ´ q||p ´ q| “ r2. In coordinates,

iCppq “
r2

|p ´ q|2
pp ´ qq ` q.

To derive the last formula, note that the vector r2

|p´q|2 pp ´ qq has length r2{|p ´ q|
and points in the same direction as p ´ q, so adding it to q gives iCppq as desired.
Here is the effect of inverting Vermeer’s The astronomer through a circle C.

p

c

iC(p)

C

Note that iC ˝iCppq “ p for all p, as the equation |iCppq´q||p´q| “ r2 is symmetric
in p and iCppq. If p P C, it follows from the definition that iCppq “ p. Although iCpqq
is not defined, one should imagine that iCpqq “ 8 and iCp8q “ q.

Here is a geometric way to construct iCppq from p.

Exercise 3.3.2. Suppose that C is a circle with center q and p P R2ztqu be a point
that lies inside C. Let ℓ be the line through q, p and let ℓ1 be the line perpendicular
to ℓ through p. Suppose that ℓ1 intersects C at a and b. Show that the point d on ℓ
where the lines through a and b tangent to C intersect is equal to iCppq.
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q

C

p
iC(p)

a

b

`

`0

In §3.2, we saw that lines can be considered as circles centered at infinity. From
this perspective, one can consider a reflection through a line as a degenerate version
of a inversion in a circle. Namely, let ℓ be a line and let m be a line that intersectsℓ
perpendicularly at a point z. Given r ą 0, let Cr be a circle with radius r that passes
through z and whose center qr lies on m, as on the left in the following picture.

qrz

p

iCr (p)

`

m

xr

z

p

`

m

x

R`(p)

r ! 1

As r Ñ 8, the circle Cr limits onto the line ℓ. We claim that for any p P R2,

lim
rÑ8

iCrppq “ Rℓppq,

where Rℓ is the reflection through ℓ. So in other words, as Cr approaches ℓ, the
inversion through Cr approaches the reflection through ℓ. To see this, note first that
as r Ñ 8, the line through p, qr limits onto the line through p that is parallel to m, as
in the right side of the picture above. Let xr be the point at which the line through
p, qr hits Cr. As r Ñ 8, the point xr limits to the closest point x P ℓ to p. Moreover,

dpiCrppq, qrq “ r2{dpp, qrq, ùñ dpiCppq, xrq “
r2

r ´ dpxr, pq
´ r,

so as r Ñ 8, we have

lim
rÑ8

r2

r ´ dpxr, pq
´ r “ lim

rÑ8

r ¨ dpxr, pq
r ´ dpxr, pq

“ dpx, pq
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where the last equality is L’Hôpital’s rule, using that xr Ñ x. So, as r Ñ 8 we have
that dpiCrppq, xrqq Ñ dpx, pq. This implies that iCrppq Ñ Rℓppq as desired.

The above discussion shows that inversions through circles are analogous to reflec-
tions through lines. Reflecting a circle through a line gives a circle, and the reflection
of a line through a line is another line. Here is the analogous statement for inversions.

Theorem 3.3.3 (Inversions send lircles to lircles). If C is a circle and C 1 is a
lircles, then iCpC 1q is also a lircle. More specifically, if q is the center of C then iC
sends lines through q to lines through q, circles not through q to circles not through q,
circles through q to lines not through q, and lines not through q to circles through q.

lines through q circles through q

lines not through q circles not through q

Proof. We saw in §3.1 that lircles are solution sets of nondegenerate equations

ax2 ` ay2 ` bx ` cy ` d “ 0. (6)

So, to show that inversions send lircles to lircles, we just have to check that an
equation of the form in (6) becomes another such equation when px, yq is replaced by
iCpx, yq. Suppose for convenience that C is a circle centered at the origin. If C has
radius r, the inversion through C can be written as

iCpx, yq “
r2

|px, yq|2
px, yq “

ˆ

r2x

x2 ` y2
,

r2y

x2 ` y2

˙

.

So, plugging in the output into Equation (6) gives

a

ˆ

r2x

x2 ` y2

˙2

` a

ˆ

r2y

x2 ` y2

˙2

` b

ˆ

r2x

x2 ` y2

˙

` c

ˆ

r2y

x2 ` y2

˙

` d “ 0.

The numerators of the first two terms combined to give a x2 ` y2, which cancels part
of the px2 ` y2q2 denominator. So, after simplification this becomes

ar4 ` br2x ` cr2y ` dpx2 ` y2q “ 0, (7)

which is a quadratic equation exactly of the form in Equation (6), except that the
coefficients have been rearranged and modified. Since the original equation (6) is
nondegenerate, its solution set C 1 is a proper subset of R2 with at least 2 points, so
the same is true of iCpC 1q, which is the solution set of (7), so the latter equation is
nondegenerate. Hence, iC takes lircles to lircles.
The permutation of the four types of lircles described in the figure can be easily

checked. As an example, Equation (6) describes a line that does not pass through 0
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when a “ 0 and d ‰ 0. In this case, Equation (7) describes a circle (since the squared
terms have nonzero coefficients) that goes through zero (as there is no constant term).
The other cases are checked similarly.
If C is centered instead at some q ‰ 0, let C 1 be a circle with the same radius

centered at the origin. Then iC “ Tq ˝ iC1 ˝T´q, so iC takes lircles to lircles as both iC1

and the two translations do. Moreover, the two translations convert between lircles
passing through q and lircles passing through the origin, so the description of the
permutation of the four types of lircles follows for iC from the description for iC1 . □
If α : ra, bs ÝÑ R2, αptq “ pα1ptq,α2ptqq is a differentiable path, recall that the

velocity vector of α at time t is the vector α1ptq :“ pα1
1ptq,α1

2ptqq of derivatives of the
coordinates of α. The speed of α at time t is the length |α1ptq| of the velocity vector.
The following theorem compares the velocity of a path α to the velocity of its image
iC ˝ α under an inversion.

Theorem 3.3.4. Suppose C is a circle in R2 with center q and radius r, and that
α : ra, bs ÝÑ R2ztqu is a path. Then for each t, the velocity vector

piC ˝ αq1ptq “
r2

|αptq ´ q|2
Rℓpα

1ptqq,

where ℓ is the line through the origin perpendicular to the vector αptq ´ q.

Here, remember that α1ptq and piC ˝αq1ptq are regarded as vectors. In the equation
above, both vectors should be considered based at the origin. See the picture below,
where the two vectors are drawn on the left as velocity vectors, and then on the right
they are translated to be based at the origin. In the picture, αptq ´ q is the dotted
vector on the left, which is horizontal, so ℓ is the y-axis. Note that the scaling factor
r2{|αptq ´ q|2 is bigger than one when αptq lies inside the circle C, and is less than 1
when αptq lies outside C. So in the picture, α1ptq is reflected over the vertical axis,
and then scaled up by r2{|αptq ´ q|2.

↵0(t)

(iC � ↵)0(t)

↵
iC � ↵

`

reflect and scale

We’ll prove Theorem 3.3.4 rigorously in a moment, but first let’s check that it
makes sense in a couple examples. For simplicty, suppose C is a circle of radius r
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centered at the origin. If α is the path αptq “ pt, 0q, then iCpαptqq “ pr2{t, 0q, so

piC ˝ αq1ptq “ p´
r2

t2
, 0q “

r2

t2
¨ p´1, 0q “

r2

|pt, 0q ´ p0, 0q|2
¨ Rℓpα

1ptqq,

where ℓ is the y-axis, which is perpendicular to αptq ´ p0, 0q “ pt, 0q as required. For
another example, suppose that βptq : r0, 1s ÝÑ R2 is a constant speed parametrization
of a radius s circle around the origin. Then iC ˝β is a constant speed parametrization
of a circle of radius r2{s around the origin, so

piC ˝ βq1ptq “
r2{s
s

β1ptq,

i.e. the velocity is scaled by the ratio of the two radii. Here, β is perpendicular to the
vector βptq ´ p0, 0q, so reflection through the line ℓ perpendicular to βptq fixes β1ptq.

Proof. Translating, we may assume that q “ 0, in which case the inversion can
be written as iCppq “ r2 p

|p|2 , and dpq,αptqq “ |αptq|.

piC ˝ αq1ptq “
d

dt
r2

αptq
|αptq|2

“ r2
α1ptq |αptq|2 ´ αptq d

dt
|αptq|2

|αptq|4
.

The mysterious term in the quotient on the right is

d

dt
|αptq|2 “

d

dt
α1ptq2 ` α2ptq2

“ 2α1ptqα1
1ptq ` 2α2ptqα1

2ptq

“ 2αptq ¨ α1ptq,

which is no longer so mysterious. Plugging it in,

piC ˝ αq1ptq “
r2

|αptq|2

ˆ

α1ptq ´ 2αptq
αptq ¨ α1ptq

|αptq|2

˙

.

Interpreting everything as vectors based at the origin, the vector b “ αptq αptq¨α1ptq
|αptq|2 is

the projection of α1ptq onto αptq, as pictured below. So, α1ptq ´ 2b is the reflection of
α1ptq over the line perpendicular to the vector αptq.

↵(t)
↵0(t)

✓
b

2breflect
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This means that piC ˝ αq1ptq is obtained from α1ptq by first reflecting over the line

perpendicular to αptq, then scaling by the factor r2

|αptq|2 , as desired. □
As a consequence of Theorem 3.3.4, we have:

Corollary 3.3.5. Suppose C is a circle in R2 with center q. Then iC is conformal,
or angle preserving: if two paths α and β intersect at an angle θ at p ‰ q, then the
paths iC ˝ α and iC ˝ β meet with angle θ at iCppq.

Proof. Theorem 3.3.4 says that piC˝αq1ptq and piC˝βq1ptq are obtained from α1ptq
and β1ptq by reflecting over the line perpendicular to p ´ q and scaling by r2{|p ´ q|2.
Reflecting and scaling vectors does not change the angle between them. □
Here’s an application of Corollary 1.2.12 that is an example of the following phi-

losophy: if you can prove something about lircles and angles when one of the lircles
is a line, you can also prove it when the lircle is a circle.

Lemma 3.3.6. If ℓ is a lircle and x, y P ℓ, there is a unique lircle ℓ1 in R2 such that
ℓ1 intersects ℓ orthogonally, exactly at the points x, y.

Proof. Let’s first prove the lemma when ℓ is a line. If x “ y, then the perpen-
dicular line to ℓ at x “ y is the unique such ℓ1. If x ‰ y, the unique such ℓ1 is the
circle centered at the midpoint of the segment xy Ă ℓ.
Now suppose ℓ is a circle. Take a circle C centered at some point q that lies on

ℓ. Then Theorem 3.3.3 says that iCpℓq is a line in R2. The points iCpxq, iCpyq lie on
iCpℓq, so by the previous case, there is a unique lircle m that goes through iCpxq, iCpyq
and intersects iCpℓq orthogonally. Inverting back and using Corollary 3.3.5, iCpmq is
the unique lircle intersects ℓ orthogonally in the points x, y. □
We can then show:

Theorem 3.3.7. Suppose C is a circle in R2, and ℓ is a lircle.
(a) If ℓ is orthogonal to C, then iCpℓq “ ℓ.
(b) Conversely, if ℓ contains some point p R C and its inversion iCppq, then ℓ is

orthogonal to C.

In particular, ℓ is orthogonal to C if and only if iCpℓq “ ℓ, it’s just that for the
backwards direction all you need is that ℓ contains the inversion of one of its points,
instead of all of them.

Proof of Theorem 3.3.7. Suppose ℓ intersects C orthogonally at x, y. As
noted above, iCpℓq also intersects C orthogonally at x, y, and Theorem 3.3.3 says
that iCpℓq is a lircle, so Lemma 3.3.6 says that iCpℓq “ ℓ.
For the reverse direction, suppose ℓ contains p R C and iCppq. If we pick some

x P C, then the lircles ℓ and iCpℓq both contain the three points p, x, iCppq. Hence,
iCpℓq “ ℓ by Exercise 3.2.3. Corollary 3.3.5 then says that the two angles θ below are
equal, and therefore are π{2. So, ℓ is orthogonal to C.
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C

✓
✓

`

□
Corollary 3.3.8. If C is a circle, the inversion iC is the unique continuous map

on its domain of definition, other than the identity, such that iCpℓq “ ℓ whenever ℓ is
a lircle orthogonal to C.

Proof. Suppose that q is the center of C and f : R2ztqu ÝÑ R2ztqu is a map
such that iCpℓq “ ℓ whenever ℓ is a lircle orthogonal to C.
Pick some p P R2ztqu. We claim that either fppq “ p or fppq “ iCppq. If p P ℓ, let

ℓ,m be two lircles that intersect C orthogonally at p. Then ℓ,m are tangent to each
other at p, so ℓXm “ tpu, and since fpℓq “ ℓ and fpmq “ m, we must have fppq “ p
as desired. So, we may assume p R C. Pick a point x P C, let ℓ be the lircles through
p, iCppq, x given by Exercise 3.2.3. Then pick y P ℓ with y R C, and let m be the lircle
through p, iCppq, y, so that ℓ ‰ m. By Theorem 3.3.7, both ℓ and m are orthogonal
to C, so we have fpℓq “ ℓ and fpmq “ m. So, fppq P ℓ X m “ tp, iCppqu.
Finally, by continuity, either fppq “ p for all p or fppq “ iCppq for all p. □
3.3.1. Exercises.

Exercise 3.3.9. Suppose that C and C 1 are two circles with the same center q and
radii r, r1. Show that the composition iC1 ˝ iC is the dilation Dq,λ around q by a factor

of λ, where λ “ p r1

r
q2. (See the end of Section 1.2.)

Exercise 3.3.10. If ℓ is a line through a point p and q ‰ p, show that there is a
unique lircle C that is tangent to ℓ at p and passes through q.

The following exercise should not be a surprise if you remember the geometric
interpretation of conjugation given in Section 1.2. In it, let’s interpret the ‘inversion’
through a line to mean the reflection through that line.

Exercise 3.3.11. If C,E are two lircles in R2, then iC ˝ iE ˝ iC “ iiCpEq. Hint: you
may find Corollary 3.3.8 and its analogue for reflections useful.

A hot pursuit in the 18th and 19th centuries was to construct machines to convert
between rotational motion and linear motion. This should make sense if you think
about the relationship between a piston and a train wheel. The goal was to perform
this transformation with a ‘mechanical linkage’ consisting of metal rods connected
together at rotating joints.
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The picture below illustrates a linkage formed from 6 metal rods connected at the
joints a, r, p, q, s. Imagine that the position of a is forever anchored. The position of r
then determines the positions of the rest of the joints, and we consider the path that
s makes as we move r around. The way the picture is drawn is supposed to indicate
the following conditions: ap “ aq and pr “ qr “ ps “ sq, where for brevity these are
the lengths of the rods with the indicated endpoints.

a r m s

p

q

Exercise 3.3.12. Show that s is the inversion of r through a circle with center a
and radius

a

ap2 ´ pr2.

Therefore, one can construct a ‘machine’ that performs inversion in a circle. For
fun, you might try constructing one of these out of sticks.

Exercise 3.3.13. Augment the linkage above with an additional bar and anchor
to create a new linkage in which r is constrained to move along an arc of a circle,
and s is moves along a line segment. Such a linkage was first invented in 1864 by
Charles-Nicolas Peaucellier, a captain in the French army.

Inversions can be defined in Rn, for any n. If

C “ tp P Rn | |p ´ q| “ ru

is a sphere in Rn with center q and radius r, the inversion through C is again

iCppq “
r2

|p ´ q|2
pp ´ qq ` q.

The geometric interpretation is the same: iCppq is just the point on the ray through
q, p whose distance to q is r2{dpp, qq. Here is a picture of an inversion in R3.
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In the picture, the center q of the sphere is inside the small horse pictured. The
inversion takes the skin of the horse to the surface shown that is enclosing the camera
outside of the camera, which separates everything shown from the interior of the
horse, which extends off to infinity.

Exercise 3.3.14. Show that stereographic projection π : Sztnu ÝÑ R2 of the unit
sphere S Ă R3 onto R2 is the restriction of an inversion iC through some sphere
C Ă R3. So, the fact that stereographic projection is conformal and sends circles to
lircles parallels the corresponding properties for inversions, which it turns out also are
true in higher dimensions.

Suppose C1, C2, C3 are circles in the plane. An Apollonian circle is a circle C that
is tangent (but not equal) to all three of C1, C2, C3.

C1

C2

C3

C1C2 C3

The existence of such circles was of great interest to the ancient Greeks, and they
are named after the Greek mathematician Apollonius of Perga.

Exercise 3.3.15. Give an example of circles C1, C2, C3 for which there are no
associated Apollonian circles. Then give an example where there are infinitely many.
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Exercise 3.3.16. Suppose now that C1, C2, C3 are all tangent, but not all at the
same point, as pictured below. Show that there are exactly two Apollonian circles
D1, D2 associated to C1, C2, C3, and that each Di is tangent to the circles C1, C2, C3 at
three different points. Hint: find an inversion that takes two of the circles to parallel
lines.

C1 C2

C3

C1

C2

C3

There are some amazing fractals that can be generated using this result. Starting
with the circles C1, C2, C3 above, let D1, D2 be the associated Apollonian circles.
Then we have six new triples of mutually tangent circles:

D1, C1, C2, D2, C1, C2, D1, C2, C3, D2, C2, C3, D1, C1, C3, D2, C1, C3.

Each of these has two associated Apollonian circles. Continue this process, drawing
the new Apollonian circles every time a new triple of mutually tangent circles is
created. The resulting fractal is called an Apollonian gasket. Here is an example.

Here is a related problem. Suppose we have two non-intersecting circles C and D,
with D contained inside C. Start with a circle E0 that is tangent to both, and is
contained within C but does not contain D. We let E1 be one of the two Apollonian
circles tangent to C,D,E0, and inductively define Ei`1 to be the circle tangent to
C,D,Ei that is not Ei´1. If after one revolution around D, the chain closes up with
some En “ E0, we say that pEiq is a Steiner chain.
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D

C

E0

doesn’t close up!

a Steiner chain E1E2

D

C

E0

E1

E2

Exercise 3.3.17. Assume the circles D and C are concentric with radii r and s,
respectively. Show that a chain pEiq as above closes up with En “ E0 if and only if

ps ´ rq2 “ 2
´s ` r

2

¯2
ˆ

1 ´ cos

ˆ

2π

n

˙˙

.

Hint: this is exactly the law of cosines for an appropriate triangle.

In particular, for concentric C,D either you get a Steiner chain for every starting
circle E0, or you never do. This shouldn’t be such a surprise, since in this case
a Steiner chain can be rotated to start at any circle tangent to C and D desired.
Surprisingly, the same duality persists when C and D are not concentric!

Theorem 3.3.18 (Steiner’s porism). Suppose C,D Ă R2 are circles and D is
contained inside C. If there is a single Steiner chain of circles as above, any circle
E0 that lies between C and D and is tangent to both is part of a Steiner chain.

The proof relies on the following lemma:

Lemma 3.3.19. If C,D are non-intersecting circles in R2, there is some circle
S Ă R2 such that iSpCq and iSpDq are concentric circles.

Assuming the lemma, since iS maps circles to circles, any Steiner chain for C,D
maps under iS to a Steiner chain for iSpCq and iSpDq, and vice versa. So as the
theorem is true for concentric circles, it must also be true for the circles C,D.

So, let’s prove the lemma. First, we prove:

Exercise 3.3.20. Suppose that ℓ is a line in R2, that C is a circle, and that
ℓ X C “ H. Show that there is a circle D Ă R2 that is perpendicular to ℓ and C.

Exercise 3.3.21. Using an inversion and the previous exercise, show that if C,D
are non-intersecting circles in R2, then there are two intersecting lircles that are both
perpendicular to both C,D.

Exercise 3.3.22. Prove the lemma, using the previous exercise.
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Exercise 3.3.23. The cross ratio of four points a, b, c, d P R2 is the ratio

CRpa, b, c, dq “
ac
bd
bc
bd

,

where for brevity we write ac :“ |a ´ c|, and similarly for the other distances. If C is
a circle in R2 centered at some q that is not any of the points above, show that

CRpiCpaq, iCpbq, iCpcq, iCpdqq “ CRpa, b, c, dq.

That is, inversions preserve cross ratio!

3.4. The hyperbolic metric

In Section 3.1, we defined the hyperbolic plane H2 as the open upper half plane
in R2, and hyperbolic lines to be vertical half lines and semicircles orthogonal to the
x-axis. In R2, lines are shortest paths, and in this section we show that hyperbolic
lines are also shortest paths in H2, with respect to a different notion of path length.
The shape of hyperbolic lines suggests what form this metric must take. Suppose,

for instance, that x, y P H2 are points with the same height. The hyperbolic line
segment between them is part of a semicircle orthogonal to the x-axis. If this is to be
the shortest path from x to y, then there must be some reason why taking a detour
upwards is more efficient then taking the horizontal path.

x y

H
2

This is similar to a phenomenon you may have seen when looking at shortest aerial
paths on maps of the Earth. For instance, the shortest path from New York to
London curves strangely upward toward Greenland when viewed in a map using the
Mercator projection, to take advantage of the fact that distances near the poles are
much smaller than they appear in the map.
To define a distance on H2, we will require that near a point px, yq P H2, distances

should be distorted by a factor of 1
y
. That is, the actual (hyperbolic) size of an object

near px, yq should be 1
y
times its apparent (Euclidean) size. To make this rigorous,

Definition 3.4.1 (Hyperbolic length). Suppose that γ : ra, bs ÝÑ H2 is a path,
where γptq “ pγ1ptq, γ2ptqq. The hyperbolic length of γ is defined to be

lengthH2pγq “
ż b

a

|γ1ptq|
1

γ2ptq
dt.
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Recall that |γ1ptq| is the Euclidean speed of γ, which integrates to the Euclidean
length of γ. The integrand |γ1ptq| 1

γ2ptq is called the hyperbolic speed of γ. If hyperbolic

distances near γptq are 1{γ2ptq-times the corresponding Euclidean distances, then
it should make sense that the hyperbolic speed of γ is the same factor times the
corresponding Euclidean speed. In the same way that Euclidean speed integrates to
length, the hyperbolic length as the integral of the hyperbolic speed.

Example 3.4.2. The paths for which it is easiest to compute hyperbolic length are
horizontal paths. For if α : ra, bs ÝÑ H2 has constant second coordinate α2ptq “ y,

lengthH2pαq “
ż b

a

|α1ptq|
1

y
dt “

ż b

a

|α1ptq|
1

y
dt “

1

y
lengthpαq,

so hyperbolic length is just Euclidean length divided by height.

Example 3.4.3. Let’s now compute the length of a vertical line segment from
px, y1q to px, y2q in H2. Parametrically, γ : ry1, y2s ÝÑ H2, where γptq “ px, tq. Well,

lengthH2pγq “
ż y2

y1

|γ1ptq|
1

γ2ptq
dt

“
ż y1

y1

1 ¨
1

t
dt

“ lnpy2q ´ lnpy1q

“ ln

ˆ

y2
y1

˙

.

In particular, the hyperbolic length of the line segment joining p0, 1{nq to p0, 1q is
the same as that joining p0, 1q to p0, nq! This is a reflection of the fact that hyper-
bolic distances high up in the half plane are much smaller than they appear, while
hyperbolic distances near the x-axis are much larger than they appear.

Armed with a notion of hyperbolic length, we now define distance in H2. Just as
on the sphere, distance is defined as the infimum of length of paths.

Definition 3.4.4. The hyperbolic distance between two points p, q P H2 is

dH2pp, qq “ inf
"

lengthH2pγq | γ : ra, bs ÝÑ H2, γpaq “ p, γpbq “ q
(

.

Hyperbolic distance defines a metric on H2. We’ll leave verifying the relevant
properties as an exercise. Mostly, the proof is the same as that in the spherical case,
except that there is a little bit more subtlety in proving that if p ‰ q then dpp, qq ą 0.

Example 3.4.5. What’s the hyperbolic distance between the points pa, 1q and pb, 1q
in H2, say when b ą a? We’ll be able to compute it on the nose by the end of the
section, but it’s easy to give an interesting upper bound.
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Create a path γ by starting at pa, 1q, moving vertically to pa, b´aq, then horizontally
to pb, b´ aq, and vertically back down to pb, 1q. From Examples 3.4.2 and 3.4.3, these
three segments have length lnpb ´ aq, 1 and lnpb ´ aq, respectively, so

dH2

`

pa, 1q, pb, 1q
˘

ď lengthH2pγq “ 2 lnpb ´ aq ` 1.

So for example, the hyperbolic distance between p0, 1q and p1000000, 1q is a bit less
than 30, which ismuch shorter than the length of the horizontal segment joining them!
This illustrates that it is a tremendous advantage for a path to detour upwards and
exploit the smaller distances at higher altitudes.

So, what paths use the distortion of the hyperbolic metric optimally? That is, we
know that it is efficient to bend upwards, but certainly there is a limit to how much
of an upwards detour a path should make in order to minimize length. As you might
be guessing, these most efficient paths are exactly the hyperbolic line segments.
Here is a first case where we can verify this.

Lemma 3.4.6. The path with the shortest hyperbolic length between points p “
px, y1q and q “ px, y2q in H2 with the same first coordinate is the vertical line segment.

Proof. Assume y2 ą y1. We’ve seen that the hyperbolic length of the line
segment joining p and q is lnpy2{y1q. So if γ : ra, bs ÝÑ H2 is a path from p to q,
we claim that lengthH2pγq ě lnpy2{y1q, with equality if and only if γ is a vertical line
segment.
Writing γptq “ pγ1ptq, γ2ptqq, we compute:

lengthH2pγq “
ż b

a

|γ1ptq|
1

γ2ptq
dt

“
ż b

a

a

γ1
1ptq2 ` γ1

2ptq2
1

γ2ptq
dt

ě
ż b

a

a

02 ` γ1
2ptq2

1

γ2ptq
dt,

ě
ż b

a

γ1
2ptq

1

γ2ptq
dt,

“ lnpγ2pbqq ´ lnpγ2paqq

“ lnpy2{y1q

as desired. Equality occurs exactly when γ1
1ptq “ 0 and γ1

2ptq ą 0 for all t, which
means that γ moves straight up the vertical line segment from p to q. □

To prove in general that the shortest path between two points in H2 lies along the
hyperbolic line joining them, we’ll transform the general case into the special case
above using a ‘hyperbolic reflection’.
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Definition 3.4.7. If ℓ is a hyperbolic line, it is the intersection with H2 of either
a vertical line L or a circle C orthogonal to the x-axis. The hyperbolic reflection

Rℓ : H2 ÝÑ H2

through ℓ is the restriction to H2 of either the Euclidean reflection through L or the
inversion through C, depending on which case we’re in.

Note that since L and C are orthogonal to the x-axis, in both cases the reflec-
tion/inversion preserves the x-axis and does indeed send points in H2 into H2.

reflect

invert

H
2

H
2

Theorem 3.4.8. If ℓ is a hyperbolic line and γ is a path in H2, then

lengthH2pRℓ ˝ γq “ lengthH2pγq.

So, Rℓ is a hyperbolic isometry: dH2pRℓppq, Rℓpqqq “ dH2pp, qq for all p, q P H2.

Proof. If γ : ra, bs ÝÑ H2 is a path, we will show that for all t P ra, bs,

|γ1ptq|
1

γ2ptq
“ |pRℓ ˝ γq1ptq|

1

pRℓ ˝ γq2ptq.
(8)

That is, the hyperbolic speeds of γ and Rℓ ˝ γ agree at time t. Integrating, this im-
plies that lengthH2pγq “ lengthH2pRℓ ˝γq, so Rℓ preserves path lengths. As hyperbolic
distance is defined in terms of path lengths, Rℓ must be an isometry.

Case 1. If ℓ is a vertical half line, then Rℓ is a Euclidean isometry. Therefore, the
Euclidean speeds of γ and Rℓ ˝γ must agree for all t. Furthermore, since ℓ is vertical,
the heights of γptq and Rℓ ˝ γptq are the same. So, we have

|γ1ptq| “ |pRℓ ˝ γq1ptq| and γ2ptq “ pRℓ ˝ γq2ptq,

from which Equation (8) follows.

Case 2. Suppose now that ℓ is a semicircle with center c and radius r. In this case,
Rℓ preserves neither height nor Euclidean speed, and the goal is to show that the
height distortion exactly matches the speed distortion, i.e.

|pRℓ ˝ γq1ptq|
|γ1ptq|

“
pRℓ ˝ γq2ptq

γ2ptq
.

For each t the points γptq and Rℓ ˝ γptq determine right triangles with bases on the
x-axis and one vertex equal to c.
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H
2

�(t)

R` � �(t)

c

`

Since these right triangles share an angle at c, they are similar. Therefore, if r is
the radius of the circle, the height ratio of γptq and Rℓ ˝ γptq is

pRℓ ˝ γq2ptq
γ2ptq

“
|Rℓ ˝ γptq ´ c|

|γptq ´ c|
“

r2

|γptq´c|

|γptq ´ c|
“

r2

|γptq ´ c|2
. (9)

This matches the speed distortion, by Theorem 3.3.4, so Equation (8) follows. □
Corollary 3.4.9. If p, q P H2, the (hyperbolically) shortest path from p to q is the

hyperbolic line segment joining them.

Proof. Let ℓ be the hyperbolic line through p, q, and let z be one of its endpoints
on the x-axis. Take any hyperbolic line m that is a semicircle centered at z. As
the reflection Rm preserves path lengths, it must take shortest paths joining p, q to
shortest paths joining Rmppq and Rmpqq. But secretly, Rm is an inversion! So, as ℓ
passes through the center of the circle of inversion, Rmpℓq is a line, which must again
be orthogonal to the x-axis since Rm is conformal.
This means that Rmpℓq is a vertical line, on which lie Rmppq and Rmpqq. By Lemma

3.4.6, the shortest path from Rmppq to Rmpqq is the segment of Rmpℓq joining them,
which implies that the shortest path joining p, q is the corresponding segment of ℓ. □
In her book The Universe in Zero Words: The Story of Mathematics as Told

Through Equations, Dr. Dana Mackenzie explains how hyperbolic geometry is the
‘geometry of whales’. Turning the hyperbolic plane upside down, imagine the x-axis
as the surface of the ocean, the depths of which are populated by whales.
Deep in the ocean, there is not so much light, and whales communicate by sonar.

Sound travels in deep water at a rate proportional to the inverse of depth3, so from
the perspective of sound distances in the ocean are scaled by 1{y, the hyperbolic
scaling factor. This means that the most efficient way for sound to travel from one
whale to another is to bend downwards along a hyperbolic line.

3This assumes pressure is the dominant factor in determining the speed of sound. Temperature
also plays a role, so the picture is a bit more complicated than presented here.



86 3. HYPERBOLIC GEOMETRY

Figure 1. Taken from The Universe in Zero Words, by Dana Mackenzie.

This picture isn’t completely accurate, as the surface of the ocean isn’t infinitely far
away from the whale, as is the x-axis from any point in H2, but the idea is beautiful.

Exercise 3.4.10. In Example 3.4.5, we estimated the hyperbolic distance between
points in H2 with second coordinate 1. You can now perform an exact calculation;
for simplicity, we will consider the points p´x, 1q and px, 1q.

✓ = cot�1(x)

(0, 0)

(x, 1)(�x, 1)
p
x2 + 1

Using the picture above as a guide, show that the hyperbolic distance

dH2

`

p´x, 1q, px, 1q
˘

“ 2 ln cot

ˆ

cot´1pxq
2

˙

. (10)

You might need that the anti-derivative of cscptq is ln tanpt{2q.

This expression in the exercise above is a bit ugly, but you can compare it to the
estimate we gave in Example 3.4.5, which in this case is 2 lnp2xq. It turns out that

lim
xÑ8

2 ln cot
´

cot´1pxq
2

¯

2 lnp2xq
“ 1,

which you can check if you like, so in fact the simpler estimate is pretty accurate as
long as x is large! In other words, for large x the three line segments in Example
3.4.5 form a somewhat length-efficient approximation of the hyperbolic line segment.

Exercise 3.4.11. You and a friend walk upwards along the vertical half lines x “ a
and x “ b at unit hyperbolic speed. Parametrically, your paths are α and β, where

αptq “ pa, etq, βptq “ pb, etq
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since the hyperbolic speeds at time t are

|α1ptq|
α2ptq

“
|β1ptq|
β2ptq

“

a

02 ` petq2

et
“ 1.

Show that the distance between you and your friend at time t satisfies

dH2pαptq, βptqq ď
|b ´ a|
et

.

Two paths α, β in H2 are asymptotic if they can be parameterized so that

lim
tÑ8

dH2pαptq, βptqq “ 0.

The exercise above shows that any two vertical half lines in H2 are asymptotic, as
|b´a|
et

ÝÑ 0 as t ÝÑ 8. As vertical half lines are those hyperbolic lines that have an
‘endpoint at infinity’, the following exercise is an extension of the previous one.

Exercise 3.4.12. Suppose that two hyperbolic lines ℓ, ℓ1 share an endpoint on the
x-axis, as pictured below. Show that there is some hyperbolic line m such that Rmpℓq
and Rmpℓ1q are vertical half lines, and use this and the previous exercise to show that
ℓ and ℓ1 are asymptotic. For the last part, you will need to parameterize ℓ and ℓ1 as
indicated above. However, don’t worry about writing out an actual formula. Instead,
compose parameterizations for the vertical half lines with Rm.

shared endpoints

`

`0 ` `0

So, even though hyperbolic distances near the x-axis are much larger than they
appear, two hyperbolic lines that share an endpoint on the x-axis are getting close to
each other quickly enough to overcome this distance distortion.
If p P R2, there are lines through p in every direction. We’d like to say that the

same is true in the hyperbolic plane.

Exercise 3.4.13. Show that if p P H2 and v is a vector based at p, there is a
unique hyperbolic line ℓ passing through p tangent to v.

p

v

`
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3.5. Hyperbolic trigonometric functions

We now know that the hyperbolically shortest path between points p, q P H2 is the
hyperbolic line segment connecting them. What’s the length of this path? In other
words, can we find a formula for dpp, qq in terms of the coordinates of p, q? To do
this, it will be convenient to intoduce the hyperbolic trigonometric functions sinh,
cosh, tanh, sech and csch. These are pronounced ‘hyperbolic sine, hyperbolic cosine,
hyperbolic tangent, etc...’, or more informally as ‘sinsh, cosh, tansh, etc...’, and are
defined as follows.

sinhptq “
et ´ e´t

2
, coshptq “

et ` e´t

2
, tanhptq “

sinhptq
coshptq

,

cschptq “
1

sinhptq
, sechptq “

1

coshptq
, cothptq “

1

tanhptq
.

Hyperbolic trigonometric functions have many features that are similar to their
Euclidean counterparts. For instance, easy calculations show that

sinh1ptq “ coshptq, cosh1ptq “ sinhptq, tanh1ptq “
1

cosh2ptq
,

There are also addition formulas similar to those in the Euclidean case.

sinhpt ` sq “ sinhptq coshpsq ` coshptq sinhpsq,

coshpt ` sq “ coshptq coshpsq ` sinhptq sinhpsq.

You can find many more identities on the Wikipedia page ‘Hyperbolic function’.
However, there’s one identity we should discuss more thoroughly:

cosh2ptq ´ sinh2ptq “
pet ` e´tq2 ´ pet ´ e´tq2

4
(11)

“
e2t ` 2 ` e´2t ´ e2t ` 2 ´ e´2t

4
“ 1.

Of course, this is similar to the familiar identity sin2ptq ` cos2ptq “ 1. The meaning
of the latter is that for each t, the point psinptq, cosptqq lies on the unit circle x2`y2 “ 1;
of course, we even know that the path t ÞÑ psinptq, cosptqq parameterizes the unit circle.
The equation y2 ´ x2 “ 1 defines a hyperbola instead of the circle, and (11) reflects

that the path t ÞÑ psinhptq, coshptqq parameterizes (the top half of) this hyperbola.

http://en.wikipedia.org/wiki/Hyperbolic_function
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y

x

y2 � x2 = 1

Let’s analyze the graphs of sinh, cosh and tanh. When t ąą 0, we have e´t « 0,
so for large positive t, it follows that sinhptq « coshptq. Similarly, for large negative
t we have et « 0, so sinhptq « ´ coshptq. In the graphs, one sees that sinh and cosh
are asymptotic as t Ñ 8 and tanh has horizontal asymptotes at ˘1.

3.5.1. Catenaries. The graph of cosh is an example of a catenary, a curve that
a rope traces out when it hangs under its own weight from two anchors.
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To prove this, we must consider the forces acting on such a length of rope. In
the figure below, fix attention on a part of the rope with length s that starts at the
lowest point on the rope. There are three forces acting on this part of the rope.
The downward force of gravity is represented by the vector p0,´λgsq, where g is a
gravitational constant and λ is the mass per unit length of the rope. There are also
tension forces at each end that are tangent to the rope. The tension at the lowest
point has magnitude T0 and the tension at the other endpoint has magnitude T .

(�T0, 0)

(T cos(✓), T sin(✓))

(0,��gs)

len
gth

s ✓

t0

Since the rope is stationary, these three forces sum to zero. Thus, we have

T cospθq “ ´T0, T sinpθq “ ´λgs, ùñ tanpθq “
λg

T0

s.

Imagine now that the rope is the graph of a function f . Then tanpθq is just the rise
over run at that point, i.e. the derivative f 1ptq. Combine T0, λ and g into one constant
a “ T0

λg
. Then our equation becomes f 1ptq “ s{a. That is,

p‹q The length of the graph of fpxq from x “ 0 to x “ t is af 1ptq.

Exercise 3.5.1. Show that the function fpxq “ a coshpx{aq satisfies p‹q.

Therefore, the graphs of the functions fpxq “ a coshpx{aq model the shapes of
hanging ropes, where a depends on the environmental conditions and type of rope.
To help you with the problem, note that the graph of f can be parameterized as

γ : r0, ts ÝÑ R2, γpxq “ px, fpxqq

so the length of the graph between x “ 0 and x “ t is

lengthpγq “
ż t

0

|γ1pxq| dx “
ż t

0

a

1 ` f 1pxq2 dx.

3.5.2. Inverse hyperbolic trig functions and a distance formula. We de-
fined hyperbolic trig functions above using exponentials, so it may not be a surprise
that their inverses can be conveniently described using logarithms. For instance,

sinh : R ÝÑ R, sinhpxq “
1

2
pex ´ e´xq
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is a bijection, so it has an inverse function sinh´1 : R ÝÑ R. In fact,

sinh´1pyq “ lnpy `
a

1 ` y2q,

which we can verify by plugging in y “ sinhpxq as follows:

lnpsinhpxq `
a

1 ` sinhpxq2q “ lnpsinhpxq ` coshpxqq “ ln ex “ x.

Exercise 3.5.2. Hyperbolic cosine restricts to a bijection

cosh : r0,8q ÝÑ r1,8q.

Show that for y P r1,8q, we have

cosh´1pyq “ ln
´

y `
a

y2 ´ 1
¯

.

In Section 3.4, we saw that the hyperbolic distance between two points in H2 is
the length of the hyperbolic line segment joining them. Here is an actual formula for
hyperbolic distance using the inverse hyperbolic cosine.

Theorem 3.5.3. The distance between p “ pp1, p2q and q “ pq1, q2q in H2 is

dH2pp, qq “ 2 sinh´1

ˆ

|p ´ q|
2
?
p2q2

˙

.

For example, we saw in Example 3.4.3 that when p, q lie on a vertical line, say with
p2 ě q2, their hyperbolic distance is given by the formula lnpp2{q2q. Since

sinh

ˆ

1

2
ln

p2
q2

˙

“
1

2

ˆ

e
ln

b

p2
q2 ´ e

´ ln
b

p2
q2

˙

“
1

2

ˆ
c

p2
q2

´
c

q2
p2

˙

“
p2 ´ q2
2
?
p2q2

,

we have that Theorem 3.5.3 is true when p, q lie on a vertical line. To prove the
theorem in general, let’s define D to be the right-hand side

Dpp, qq “ 2 sinh´1

ˆ

|p ´ q|
2
?
p2q2

˙

.

Exercise 3.5.4. If ℓ is a hyperbolic line, show that DpRℓppq, Rℓpqqq “ Dpp, qq for
all p, q P H2. Hint: the figure below depicts the reflection of p, q through ℓ. The points
p, q are assumed to be at distances a, b from the center of ℓ. Show that

|Rℓppq ´ Rℓpqq|2 “
r4

pabq2
|p ´ q|2, pRℓppqq2 “

r2

a2
p2, and pRℓpqqq2 “

r2

b2
q2.

For the first equation, you might find the law of cosines useful. The second two
equations should not take more than one sentence to prove.
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a b
✓

radius r

r2/b

r2/a

`

p
q

R`(p)

R`(q)

Exercise 3.5.5. Using the previous two problems, prove the theorem in general.
Hint: if p, q P H2, let ℓ be the line through p, q. There is a hyperbolic reflection R
such that Rpℓq is a vertical half-line in H2. Now apply the previous problems to Rppq
and Rpqq.

Exercise 3.5.6. Prove the following alternative distance formula:

dH2pp, qq “ cosh´1

ˆ

1 `
|p ´ q|2

2p2q2

˙

,

either by transforming the one above into this, or by repeating the proof structure
above.

3.5.3. Hyperbolic circles. Here is a cool application of the distance formula
above. If p P H2 and r ą 0, the hyperbolic circle of radius r centered at p is

CH2pp, rq :“ tq P H2 | dH2pp, qq “ ru.

We will call p the hyperbolic center of C, and r the hyperbolic radius.

Remark 3.5.7. A priori it may be possible that we have CH2pp, rq “ CH2pq, sq,
where p ‰ q, in which case ‘the’ hyperbolic center of a hyperbolic circle may not
be well defined. This actually happens in spherical geometry: on a unit sphere, the
circle of radius π{2 centered at the north pole is the equator, which is also the circle of
radius π{2 centered at the south pole, so the ‘center’ of the equator is not well defined.
However, if p, q P H2, hyperbolic circles CH2pp, rq “ CH2pq, sq only agree if p “ q and
r “ s. Indeed, let ℓ be the hyperbolic line through p, q, and suppose for instance that
s ě r. Then the point z P ℓ with dH2pq, zq “ s that lies on the opposite side of q from
p must lie in CH2pq, sq, but can’t lie in CH2pp, sq since dH2pp, zq “ dH2pp, qq ` s ą r.

The following is a bit surprising!

Fact 3.5.8. Every hyperbolic circle in H2 is also a Euclidean circle in R2.

Note that we are not saying that CH2pp, rq is the Euclidean circle of radius r centered
at p. Indeed, while CH2pp, rq is a Euclidean circle, its Euclidean center and radius
will always be different than p and r.
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Proof. By the distance formula, given p “ pp1, p2q and r ą 0 the hyperbolic
circle CH2pp, rq is the set of points q “ px, yq P H2 such that

r “ 2 sinh´1

ˆ

|p ´ q|
2
?
p2y

˙

,

ðñ sinh
´r

2

¯

“
|p ´ q|
2
?
p2y

ðñ 4 sinh
´r

2

¯2

p2y “ px ´ p1q2 ` py ´ p2q2. (12)

This is a quadratic equation in the variables x, y with no xy terms, and where the
coefficients of x2 and y2 are both 1. If r ą 0, there are at least two solutions to this
equation, since the points pp1, erp2q and pp1, e´rp2q both have distance r to p. So, by
Fact 3.2.2, the equation (12) describes a circle. □
Exercise 3.5.9. By completing the square in (12), find the Euclidean center and

radius of CH2pp, rq in terms of p “ pp1, p2q and r. Then show that every Euclidean
circle contained in H2 is also a hyperbolic circle.

In Euclidean geometry, a line ℓ Ă R2 passes through the center of a circle C Ă R2

if and only if ℓ K C, which happens if and only if the reflection RℓpCq “ C. Prove
this as an exercise if you like! Here is the hyperbolic analogue .

Lemma 3.5.10. If C :“ CH2pp, rq is a hyperbolic circle and ℓ is a hyperbolic line,
then ℓ passes through the hyperbolic center of C ðñ ℓ K C ðñ RℓpCq “ C, where
Rℓ is the hyperbolic reflection through ℓ.

Proof. Since dH2pRℓpqq, Rℓppqq “ dH2pq, pq, the former is r if and only if the
latter is, implying that RℓpCH2pp, rqq “ CH2pRℓppq, rq. Therefore p P ℓ ðñ Rℓppq “
p ðñ RℓpCq “ C. If ℓ is a semicircle, Theorem 3.3.7 says that RℓpCq “ C ðñ
ℓ K C. If ℓ is a vertical half-line, then Rℓ is a Euclidean reflection, and we have
RℓpCq “ C ðñ ℓ K C as mentioned above. □
This lemma can be used to give a ruler and compass construction of the hyperbolic

center of a hyperbolic circle C with Euclidean center c. Let a be the point at which
the vertical line ℓ through c hits the x-axis, and let b be a point at which a line m
through a is tangent to C. By the lemma, both ℓ and m pass through the hyperbolic
center p of C, which must be their point of intersection.
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C

p

a

b

m

`

c

Exercise 3.5.11. Let C be a Euclidean circle inH2 whose highest and lowest points
are at heights a and b. Then the Euclidean center is at height a`b

2
, the arithmetic

mean. Show that the hyperbolic center is at height
?
ab, the geometric mean. Hint:

the ruler and compass construction is not the most efficient way to do this.

The inequality of means states that
?
ab ď a`b

2
. This makes sense in terms of

the exercise above: since hyperbolic distances becomes smaller relative to Euclidean
distance when height is increased, the hyperbolic center of hyperbolic circle should
be lower down than the Euclidean center.

3.6. The pseudosphere and the tractrix

Consider the rectangle R in the hyperbolic plane below. The surface created by
identifying the vertical sides of R is called a pseudosphere. As the hyperbolic length
of the cross-section of R at height y decreases as y increases, the ‘circumference’ of
the pseudosphere decreases with height.

1

m

2⇡0

With respect to the specific dimensions of the rectangle in the picture, the circum-
ference of the pseudosphere is 2π at the bottom and decreases to 2π

m
at the top.

The pseudosphere above is the surface of revolution of a tractrix. Imagine that the
xy-plane represents the Earth and the x-axis is a road. If a car located at p0, 0q is
anchored by a taught chain to a weight at p0, 1q, the tractrix is the path traced out
by the weight as the car moves to the right along the x-axis.
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weight

(0, 0)

(1, 0)

tractrix

The name comes from the Latin word trahere, meaning to pull or drag. In the
picture above, the force the car applies to the weight is always in the direction towards
the car. Therefore, if you move to the right along the x-axis at unit speed, then at
time t the box should be at distance 1 from pt, 0q and moving in the direction of pt, 0q.
To explain why the pseudosphere is obtained by revolving the tractrix, we should

analyze how fast the cross-sectional circumferences of the pseudosphere are decreas-
ing. Initially, you might be tempted to say that the pseudosphere is obtained by
revolving the curve y “ 1{x around the x-axis, since the cross-sectional lengths of R
decay inversely with height. However, this is not accurate because height in H2 does
not quite correspond with height in the pseudosphere.
Instead, looking at the rectangle R we see that the height y cross-section has length

2π{y and is at hyperbolic distance lnpyq from the bottom of the rectangle; in other
words, the cross-section at hyperbolic distance s from the bottom has length 2πe´s.
The same is then true for the pseudosphere, and the distance on a surface of revolution
between two cross-sections is just the arc length of the revolved curve. So, we want
to show that after the tractrix has used arc length s, its height is e´s.

(0, 0)

(1, 0)

e�s

arclength = s

To show this, we will need to find a parameterization of the tractrix.

Proposition 3.6.1. The tractrix can be prescribed parametrically as

γ : r0,8q ÝÑ R2, γptq “ pt ´ tanhptq, sechptqq.

Exercise 3.6.2. We leave the proof of the above proposition as a guided exercise.
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(a) If γptq is the weight’s position at time t, explain why

γptq `
1

|γ1ptq|
γ1ptq “ pt, 0q.

(b) Show that if γptq “ pt ´ tanhptq, sechptqq, then

γ1ptq “ ptanh2ptq,´ tanhptq sechptqq, |γ1ptq| “ tanhptq.

(c) Show that γptq “ pt ´ tanhptq, sechptqq satisfies the differential equation from
a) and the initial conditions γp0q “ p0, 1q and γ1p0q “ p0, 0q. As the tractrix is
completely determined by the initial conditions and the differential equation of
a), this proves the proposition.

We can now verify that the pseudosphere is obtained by revolving the tractrix
around the x-axis. First, the arc length of the tractrix from t “ 0 to t “ a is given by

ż a

0

|γ1ptq|dt “
ż a

0

tanhptqdt

“ ln coshptq
ˇ

ˇ

a

0

“ ln coshpaq.

This arc length is s when a “ cosh´1pesq, at which point the height of the tractrix is

sechpcosh´1peaqq “ e´s,

as desired. This shows that the surface of revolution is the pseudosphere.
The physical description of the tractrix can be used to construct paper models of

the pseudo-sphere. Cut out many identical copies of an annulus, the region between
two concentric circles. Cut larger and larger sectors out of these annuli and attach
the exposed cuts with tape. We now have a number of paper bracelets, that we stack
in order of size to create an approximation to a pseudosphere.

glue
glue

stack

4 copies stacked

This approximation is also a surface of revolution, so our claim is that the profile
curve approximates a tractrix. The tractrix is determined by the condition that at
each point, the tangent line intersects the x-axis after one unit of length. As long as
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the outer circle used in creating the annuli has radius 1, the same condition holds at
every point on the approximate that lies on one of these outer circles.

length 1

When the increment between adjacent sector sizes is small, every point on our
paper model is very close to these outer circles. So, in the limit the profile curve
becomes the tractrix and our paper model becomes the pseudosphere.
Cutting our paper model along a profile curve gives a geometric approximation to

the region R in H2, which is our first physical model for the hyperbolic plane. Try to
use this model to understand some of the properties of hyperbolic geometry we have
discussed – for instance, can you see the homogeneity within the model?

There is an interesting relationship between the tractrix and the catenary. Imagine
laying a strip of tape on the entire length of the graph of y “ coshpxq, for x ě 0.
Then grab the end of the tape at p0, 1q, and slowly pull downwards. As the tape
unwraps, the end you are holding will sweep out the tractrix. Below, the tractrix is
in red and a few snapshots of the tape are drawn in blue.

x

y

(0, 1)

One summarizes the above by saying that the tractrix is the involute of the catenary.
More precisely, the involute of a parameterized curve γ : r0, bs ÝÑ R2 is the curve
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α : r0, bs ÝÑ R2 such that

αptq “ γptq ´

ˆ
ż t

0

|γ1psq| ds

˙

γ1ptq
|γ1ptq|

.

This formula may look complicated, but it is just saying that at time t, the point αptq
is obtained by traveling from γptq in the direction opposite to the velocity γ1ptq for a
distance that is equal to the length of γ from 0 to t. In other words, the subtracted
term on the right represents the blue lines in the picture above.

Exercise 3.6.3. Verify that if γ : r0,8q ÝÑ R2, γptq “ pt, coshptqq parameterizes
the right half of the catenary, its involute is the tractrix αptq “ pt ´ tanhptq, sechptqq.

Exercise 3.6.4. Find, and draw, the involute of γ : r0, 2πs ÝÑ R2 when

(a) γptq “ pcosptq, sinptqq.
(b) γptq “ pp1 ` cos tq cos t, p1 ` cos tq sin tq. This γ is called a cardioid, since when

drawn it looks like a heart. Its involute will also be a cardioid, but scaled,
reflected and translated. Feel free to use a computer to plot γ and its involute,
as it’ll be a bit difficult to do by hand.


