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1 Introduction

The following is a brief description of some of the multi-paper projects that I have been involved
in recently. There are four sections (including this one), and the topics are as follows.

§2. The rank of hyperbolic 3-manifolds, see especially [22].

§3. The global topology of the Chabauty space of PSL2(R), see [15] with Lazarovich and Leitner.

§4. My work at the intersection of geometry and measurable group theory, joint with various
subsets of Abért, Bergeron, Gelander, Nikolov, Raimbault, Samet (abbreviated ABBGNRS
when I am included as the second B), especially the paper with ABBG [1],

§5. Homeomorphisms of the boundary of a handlebody, e.g. [14, 17].

2 Rank, genus and carrier graphs

The rank of a closed 3-manifold M is the minimal number of elements needed to generate its
fundamental group. Rank initially became popular through its connection with the Heegaard genus
g(M), the minimal genus of a surface S ⊂ M that divides M into two handlebodies. Rank is at
most genus, and in the 1960s, Waldhausen conjectured that the rank and Heegaard genus of a
closed orientable 3-manifold are always equal. This was disproven by Boileau-Zieschang [25], see
also Schultens-Weidmann [40] and Li [36], but in all known examples the Heegaard genus is at most
twice the rank. Considerable effort has been made to either prove or disprove the existence of a
linear bound, see e.g. [6, 35], but currently even the following conjecture is open:

Conjecture 2.1. The Heegaard genus of a closed, orientable hyperbolic 3-manifold M is bounded
above by some function of its rank.

In another direction, inspired by an understanding of geometric limits of surface groups, Mc-
Mullen asked whether the rank of M constrains its geometry in the following sense.

Question 2.2 (McMullen [10]). Is it true that the radius of the largest embedded ball in a closed
hyperbolic 3-manifold M is bounded above by a function of rank(M)?
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Figure 1: A geometric decomposition of a thick manifold with bounded rank into white building
blocks and blue product regions, where the product regions may be very wide.

We note that Bachman-Cooper-White [8] have showed that a bound on Heegaard genus gives a
bound on the largest embedded ball, so Conjecture 2.1 implies a positive answer to Question 2.2.

In a series of papers leading up to the final paper [22], joint with Souto, we show that both
the Heegaard genus and the radius of the largest embedded ball in M can be bounded above by a
function of rank(M) and a lower bound for the injectivity radius inj(M). This is a consequence of
the following general geometric decomposition theorem.

Theorem 2.3 (B-Souto [22]). Given k, ε, there are n = n(k) and D = D(k, ε) as follows. Suppose
that M is a closed hyperbolic 3-manifold M with injectivity radius at least ε and rank at most k.
Then M has a geometric decomposition modeled on a graph with complexity at most n, where the
vertices are ‘building blocks’ that are submanifolds of M with diameter bounded by D, and where
the edges are ‘wide product regions’ foliated by level surfaces with diameter at most D.

See Figure 1 for an illustration. To prove the theorem above, we represent generating sets for
π1M geometrically using minimal length carrier graphs in M , introduced by White [43] and further
developed by myself and Souto [11, 21, 20, 41], and (very roughly) show that the geometry of M
tracks the geometry of the carrier graph. The paper [22], which is 225 pages, was accepted by
Memoirs of the AMS in April 2024.

2.1 Future directions and grad student projects

The obvious future direction in this program is to remove the dependence on injectivity radius from
(a suitably modifed version of) Theorem 2.3. Souto and I already have one paper on the topic in
which there is no assumption on injectivity radius needed. In [21] we prove:

Theorem 2.4 (B-Souto [21]). If M is a closed hyperbolic 3-manifold that fibers over the circle
with fiber Σg, and the monodromy map φ : Σg −! Σg has translation distance in the curve complex
C(Σg) at least some C(g), then rank(M) = 2g + 1.

As a first step, I plan to address the following conjecture.

Conjecture 2.5. If (Mn) is a sequence of closed hyperbolic 3-manifolds with rank(Mn) ≤ k and
vol(Mn) −!∞, then the Cheeger constants h(Mn) −! 0.
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Under the assumption that inj(Mn) ≥ ε > 0, this is a theorem of mine with Souto [20] that was
a precursor to Theorem 2.3. I expect similar arguments to apply, but the geometric limit arguments
required are more complicated.

I also have a graduate student, Mujie Wang, who is working on a Heegaard splitting analogue
of Theorem 2.4. Their goal is to prove that if M has a genus g Heegaard splitting with Hempel
distance larger than some C = C(g), then rank(M) = g. They have a proof sketch that shows
this is the case asymptotically almost surely for ‘random’ M , i.e. M produced by gluing two copies
of a genus g handlebody H together via a gluing map chosen according to a random walk on the
mapping class group of ∂H.

3 The Chabauty space of PSL(2,R)

Let G be a Lie group and let Sub(G) be the set of all closed subgroups of G. We equip Sub(G)
with the Chabauty topology, in which Hi ! H if all accumulation points of sequences hi ∈ Hi lie
in H, and every h ∈ H is a limit of a sequence hi ∈ Hi. The global structure of Sub(G) can be
quite rich, even when G is relatively uncomplicated. For instance, Hubbard-Pourrezza [32] showed
that when G = (R2,+) the space Sub(G) is homeomorphic to the 4-sphere S4. Moreover, if we let
N ⊂ Sub(G) be the set of all non-lattices, i.e. those subgroups of R2 that are not isomorphic to Z2,
then (Sub(G),N ) is homeomorphic to the suspension of (S3, trefoil knot).

When G = Isom+(Hn), the Chabauty topology is of fundamental importance, especially in low
dimensions, e.g. in Thurston’s hyperbolization theorem for 3-manifolds. In this setting, Chabauty
convergence of discrete groups is often rephrased in terms of the quotient orbifolds, as follows. If
Γ ∈ Sub(G) is discrete, the quotient X := Γ\Hn is a hyperbolic n-orbifold, and if we fix a base
frame1 f0 for Hn, the projection f̄0 is a base frame for X, and

{Γ ∈ Sub(G) | Γ discrete } −!
{

oriented, framed hyperbolic
n-orbifolds (X,f)

}
/o.p. framed isometry (3.1)

is a bijection that carries the Chabauty topology on the left to the framed Gromov-Hausdorff
topology on the right, in which (X, f), (X ′, f ′) are close if there is an o.p. almost-isometry between
large neighborhoods of the base frames that takes one base frame to the other.

However, although much is known about convergence of framed hyperbolic manifolds, the global
structure of Sub(G) has not been extensively studied. With Nir Lazarovich, Arielle Leitner, and
also Sangsan Warakkagun, I have been trying to understand the structure of Sub(G) when

G = PSL(2,R) ∼= Isom+(H2).

First, some important subspaces of Sub(G) are as follows.

1. The topology of the subspace Subelem(G) of elementary subgroups can be completely de-
scribed, see BLL [15]. In particular, it is homotopy equivalent to the union of a certain
countable set of spheres in R3.

2. For each finite type, oriented topological 2-orbifold S, there is a subset SubS(G) ⊂ Sub(G)
consisting of all groups Γ < G such that Γ\H2 is a finite volume 2-orbifold that is o.p.

1A base frame for M is an orthonormal frame for the tangent space TMp at some point p ∈ M .
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isometric to S. Via the correspondence in (3.1), SubS(G) can be thought of as the moduli
space of all framed hyperbolic structures on S, and it (orbi)-fibers over the traditional moduli
space M(S) with (regular) fibers homeomorphic to the frame bundle of S. See BLL [15].

In a 2-paper collaboration with Lazarovich and Leitner, the first being [15] and the second
in preparation, we understand connectivity properties of Sub(G) as follows. First, the connected
components of Sub(G) are the singleton set {G}, the spaces SubS(G) where S is a sphere with
three cone points, and the rest of Sub(G), which we’ll call Sub1(G) here, since it’s the connected
component of the identity. So, Sub1(G) contains basically all the interesting topology of Sub(G).

The main goal of the two papers, though, is to compute the fundamental group of Sub1(G).

Conjecture 3.1 (BLL). π1 Sub1(G) is an infinitely generated free group.

The nontrivial elements of π1 come from attaching certain multiply-ended spaces SubS(G) to
the rest of Sub1(G); these S are all spheres with 4 cone points. In the first paper [15], we give a
fine analysis of how the spaces SubS(G) are attached to each other, proving for instance that their
boundaries have neighborhood deformation retracts. In the second paper, we’ll focus on the space

Sub∞(G) := { discrete Γ < G with infinite covolume}.

One of the main results will be the following.

Theorem 3.2 (BLL, in preparation). The space Sub∞(G) deformation retracts onto the subset
Subfin(G) consisting of all finite subgroups of G.

An attractive special case of the argument, phrased in terms of quotients, says that the space of
all infinite volume framed hyperbolic surfaces is contractible. Intuitively, one contracts an arbitrary
framed surface to H2 by deforming the metric so that the injectivity radius at the base frame goes to
infinity. However, it’s subtle to do this in a canonical enough way to get a continuous contraction!
We end up using a partition of unity to patch together a vector field v on Sub∞(G) (which is not
a manifold, but is almost a foliated space) such that flowing along v gives the contraction.

In a separate project with Sangsan Warakkagun, my former student, I have been studying local
connectivity of Sub(G). This is a natural question, since there’s a way in which the subset of
Sub(G) consisting of infinitely generated groups has a sort of fractal structure. While Sub(G) is
not locally connected, it turns out that the only problem is groups with unbounded torsion.

Theorem 3.3 (BW, in preparation). If m > 0, let Subm(G) be the set of closed subgroups Γ < G
such that every finite order element of Γ has order at most m. Then Subm(G) is locally connected.

Finally, my graduate student Matt Zevenbergen has been studying the topology of Sub(G) when
G = PSL(2,C) = Isom+(H3). Here, the picture is quite different. Each finite volume hyperbolic
3-orbifold M determines a component of Sub(G), so all the interesting topology comes from infinite
volume orbifolds. Disregarding torsion for simplicity, let’s define

H3
∞ := { framed infinite volume hyperbolic 3-manifolds }/framed isometry.

Using the big theorems from Kleinian groups, Matt can show that H3
∞ is connected. But sur-

prisingly, it is not path connected! Matt shows that if Z-many copies of a compact hyperbolic
3-manifold with two isometric totally geodesic boundary components are glued end-to-end to cre-
ate a hyperbolic 3-manifold M , then {(M,f) | f a frame in M} is a path component of H3

∞.
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4 Benjamini-Schramm convergence

In this section we’ll discuss some applications of ‘Benjamini-Schramm (BS) convergence’ of se-
quences of finite volume Riemannian manifolds, mostly from my papers [1, 2, 4, 5, 18]. Let

Md = {pointed Riemannian d-manifolds (M,p)}/pointed isometry.

We consider Md with the smooth topology, where (M,p) and (N, q) are close if their base points
are contained deep inside compact subsets of M and N that are diffeomorphic, and on which the
Riemannian metrics are smoothly close, see [5, 39]. For each fixed manifold M , there is a map

M −!Md, p 7−! (M,p), (4.1)

and when M has finite volume, we let µM be the finite measure onMd obtained by pushing forward
the Riemannian measure vol on M under (4.1).

Definition 4.1 (BS-convergence). We say that a sequence of finite volume Riemannian d-manifolds
(Mn) BS-converges if the probability measures (µMn/ vol(Mn)) weak* converge, in which case the
BS-limit is the limiting probability measure µ on Md.

Intuitively, the BS-limit measure µ encodes (for large n) what Mn looks like near a randomly
chosen base point: namely, if you select a µ-random (M,p) and take a picture of some bounded
neighborhood of the base point p, the distribution of pictures you’ll get is close to what you see
around randomly chosen base points for Mn.

Benjamini-Schramm (BS) convergence was first considered in 2001 by Benjamini-Schramm [9]
in the setting of finite graphs. In the paper ABBGNRS [3], my coauthors and I adapted it to
sequences of locally symmetric spaces, although in that paper we focused more on an equivalent
algebraic interpretation of BS-convergence, in which sequences (Γn) of lattices in a fixed Lie group G
converge to invariant random subgroups of G, since studied by myself [12, 23] and many others. The
precise definition above comes from my paper [5], in which Abért and I develop some foundational
properties of BS-limits in the Riemannian setting.

The measures µM above and their weak* limits µ are examples of unimodular measures on
Md, see [5] for the definition. Informally, unimodularity means that for a given manifold M , the µ-
probability of selecting the pointed manifold (M,p) is the same for all p. For another perspective, if
we vary M , the images of the maps in (4.1) form the ‘leaves’ of a ‘foliation’ ofMd, and unimodular µ
are the completely invariant measures of this foliation, i.e. measures that are obtained by integrating
the Riemannian volumes on the leaves against some transverse measure. Now, the leaves here are
singular — they are of the form M/ Isom(M) and may not be manifolds — so this is not an actual
foliation. One of the main theorems in [5] is that one can make this viewpoint precise by lifting
to a foliated desingularization ofMd in which the problematic symmetries that collapse the leaves
have been blocked, and where unimodular measures on Md lift to completely invariant measures.

Here are some applications of BS-convergence from my papers [1, 2]. Let X be an irreducible
Riemannian symmetric space of noncompact type. Then X has transitive isometry group, so
because of the equivalence relation on Md, the image of X under the map in (4.1) is a point. We
say that a sequences of locally symmetric quotients Mn = Γn\X BS-converges to X if the BS-limit
is an atomic measure on this point. This happens when for large n, Mn looks much like X near a
randomly chosen basepoint, which is equivalent to the condition that for all R > 0,

vol{p ∈Mn | injMn
(p) < R}

vol(Mn)
! 0.
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In [2], my coauthors and I noticed that combining this framework with the Stuck-Zimmer Theo-
rem [42] from ergodic theory has the following strong consequence.

Theorem 4.2 (ABBGNRS [2]). If rankR(X) ≥ 2 then any sequence of pairwise non-isometric,
finite volume quotients Mn = Γn\X BS-converges to X.

We then applied this observation to study the growth of the Betti numbers bk(Mn).

Theorem 4.3 (ABBGNRS [2]). If (Mn) BS-converges to X and for some fixed ε > 0 we have
inj(Mn) > ε, then for all k the volume-normalized Betti numbers

bk(Mn)

vol(Mn)
! β

(2)
k (X).

Here, β
(2)
k (X) is the kth L2-Betti number of X. The above was known previously for (Mn) that

are covering towers, by work of DeGeorge and Wallach [28], see also Lück [37], but this was the
first really general result that was uniform over all quotients of a fixed symmetric space.

In the later paper ABBG [1], my coauthors and I removed the assumption on injectivity radius
from Theorem 4.3. In fact, we proved the following more general result:

Theorem 4.4 (ABBG [1]). Suppose X 6= H3 and Mn = Γn\X is a BS-convergent sequence of
finite volume quotients. Then the sequence bk(Mn)/vol(Mn) converges.

It follows that if Mn ! X, then bk(Mn)/vol(Mn)! β
(2)
k (X). One can see this by interleaving

the sequence (Mn) with another sequence that BS-converges to X where the limit of normalized
Betti numbers is already known, e.g. a covering tower, and then applying Theorem 4.4. The
assumption X 6= H3 above is necessary, essentially because Dehn filling can dramatically alter
Betti numbers without appreciably changing geometry.

We gave two proofs of Theorem 4.3 in [2], one representation theoretic and one via an analysis
of heat kernels. The proof of Theorem 4.4 is very different. Essentially, we rely on a similar result of
Elék [29] that says that if (Kn) is a BS-convergent sequence of simplicial complexes with bounded
degree, then bk(Kn)/ vol(Kn) converges for all k. Elek had suggested that one could apply this
to sequences of Riemannian manifolds with an injectivity radius lower bound by using a random
process to turn the manifolds into simplicial complexes (take the nerve complex associated to a net
constructed via Poisson processes). Bowen [26] implemented this argument, but his proof had an
error. We fixed the error, applied this argument to the thick parts of the (Mn), and then showed
that adding back in the thin parts doesn’t change the volume-normalized Betti numbers much if
X 6= H3. Most of the difficulty in the paper comes from analyzing how the Elek/Bowen argument
interfaces with the shape of the boundary of the thick part, which can be complicated.

I have a few other papers on this topic. In a second ABBGNRS collaboration [4], we construct
many interesting examples of BS-limits of sequences of hyperbolic manifolds that show how flexible
the situation in rank 1 is, in contrast to Theorem 4.2. In [19], Raimbault and I show that the end
spaces of ‘unimodular random manifolds’, i.e. random manifolds that appear as BS-limits, are very
regular, for instance there are either 0, 1, 2 or a Cantor set of them. The papers [24, 13], involve
the algebraic version of BS-limits, namely invariant random subgroups of Lie groups. In the first
paper, Tamuz and I study their ‘unimodularity’ properties, and in the second, Bowen, Tamuz and
I classify invariant random subgroups of certain semidirect products.
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More recently, I have been interested in applying these techniques to study the growth of rank
with respect to volume. A celebrated recent result of Fraczyk-Mellick-Wilkens [30] states that if
Mn = Γn\X is a sequence of finite volume quotients of a higher rank symmetric space X, and (Mn)
BS-converges to X, then the rank gradient

RG(Mn) := lim
n!∞

rank(Mn)/ vol(Mn)

is zero. Here, as in §2, rank refers to the minimal number of generators for π1. The question of
whether the corresponding statement is true for X = H3 is of considerable interest. For instance:

1. There is a sequence (Mn) of arithmetic hyperbolic 3-manifolds where Mn ! H3 but

lim
n!∞

g(Mn)/ vol(Mn) > 0,

where g is Heegaard genus, see e.g. [7, Pf of Theorem 2, pg 21]. So, if rank(Mn)/ vol(Mn)!
0, there is a sequence of hyperbolic 3-manifolds where rank grows sublinearly in volume
while Heegaard genus grows linearly, which is a very strong counterexample to Waldhausen’s
conjecture that rank and genus are equal. (In the counterexamples [25, 40, 36] cited in §2,
rank and genus are always within a factor of 2.)

2. On the other hand, there are examples of sequences of hyperbolic 3-manifolds (Mn) with
Mn ! H3 and where RG(Mn). If one can also construct such examples where RG 6= 0, one
can show that Gaboriau’s Fixed Price Conjecture in measurable dynamics is wrong.

Inspired by this discussion, I propose the following conjecture.

Conjecture 4.5. Suppose (Mn) is a sequence of hyperbolic 3-manifolds with RG(Mn) = 0. Then

h(Mn)/ vol(Mn)! 0,

where h(·) is the Cheeger constant.

The sequence of examples mentioned in 1. above have h(Mn)/ vol(Mn) bounded below, so if the
conjecture is true, then this sequence has nonzero rank gradient, answering the question above.

Note the similarity between Conjectures 2.5 and 4.5. They are both direct generalizations of
my work with Souto in [20], but in Conjecture 2.5 the point is to allow inj(Mn) ! 0, while in
Conjecture 4.5 the point is to replace a uniform upper bound on rank with a sublinear bound
on rank. We note that it is fine in all our desired applications to only prove Conjecture 4.5 for
sequences Mn with inj(Mn) ≥ ε > 0, so the two conjectures are independent in spirit. Briefly, the
idea for Conjecture 4.5 is to combine some of the carrier graph machinery from §2 with certain
distributional limits in the style of Benjamini-Schramm.

5 The geometry of handlebodies

Let H be a genus g handlebody and let S = ∂H. Part of my research involves studying how
the topology of S (its self-homeomorphisms, its geodesic laminations, etc...) interacts with the
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structure of H. For instance, we say that f : S −! S extends to H if it is the boundary restriction
of a homeomorphism of H, and the handlebody group is defined to be

MCG(H) = { homeomorphisms f : S −! S that extend to H }/isotopy ⊂ MCG(S)

In [38], Masur introduced what is now called the limit set of H, defined as

Λ(H) = {meridians γ ⊂ S} ⊂ PML(S),

where a meridian is an essential simple closed curve on S that bounds a disk in H. This Λ(H) acts
as a dynamical limit set for the action MCG(H) y PML(S). In some ways, Λ(H) is similar to
the limit set of a geometrically finite Kleinian group: for instance, Kerckhoff [33] and Gadre [31]
show that Λ(H) has measure zero. However, it is still quite mysterious! For instance:

Question 5.1. Suppose λ, µ ∈ PML(S) have the same support, i.e. they are two transverse
measures on the same geodesic lamination. If λ ∈ Λ(H), is µ ∈ Λ(H)?

The answer is unknown. However, Sebastian Hensel and I can reduce the question to the case
that λ, µ are minimal and filling, and we can show that the answer is ‘yes’ when µ is ergodic.

If f is a pseudo-Anosov element of MCG(H), then the attracting and repelling laminations
λ±(f) lie in Λ(H). While the converse is not true, with Johnson and Minsky I showed:

Theorem 5.2 (B–Johnson–Minsky [14]). If f is pseudo-Anosov then λ+(f) ∈ Λ(H) if and only if
λ−(f) ∈ Λ(H), and this occurs if and only if some power fn extends to a homeomorphism of some
nontrivial subcompression body of H.

Here, a subcompression body of H is a 3-submanifold of H obtained by choosing a finite union
D of disjoint properly embedded discs in H, taking a regular neighborhood of S ∪ D within H,
and adding in any complementary components that are balls. One reason why Theorem 5.2 is
interesting is that it reconcile two competing notions of genericity used to ensure hyperbolicity of
certain gluings of 3-manifolds, see Lackenby [34].

In the recent paper [17], Cyril Lecuire and I give a fine study of Hausdorff limits of meridians
and an associated technical tool called ‘homoclinic leaves’. As a corollary of this and some of the
arguments in the paper [14] referenced above, we characterize extension of reducible f ∈ MCG(S)
to subcompression bodies of H. After passing to a power, a reducible element leaves invariant a
decomposition S = S1∪ · · · ∪Sk, where for each i, the restriction fi|Si is either the identity, a Dehn
twist (if Si is an annulus) or a pseudo-Anosov on Si. We show that extension of f can be reduced
to certain extension properties of the fi, individually and in pairs. See [17, Theorem 1.6].

The proof of Theorems 5.2 uses hyperbolic geometry: we analyze the algebraic and geometric
limits of certain sequences of convex cocompact hyperbolic structures on int(H). In a forthcoming
paper, Lecuire and I [16] extend this analysis to a description of the geometric limits of iterations
in Schottky space, proving a compressible version of Jeff Brock’s thesis [27].

Recall that in his thesis, Brock studied iterations in a Bers slice, in which one fixes a homeo-
morphism f : S −! S and two points X,Y ∈ T (S) in the Teichmüller space of a closed surface
S, and study the geometric limiting behavior of the hyperbolic 3-manifolds Mn = Q(fn(X), Y ),
which are homeomorphic to S × R and have two conformal boundary components identified with
fn(X) and Y , respectively. Here, if f is reducible and preserves a decomposition S = S1 ∪ · · · ∪ Sk
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then typically what happens is that (Mn) converges to a manifold obtained from S ×R by drilling
out the union of all the pseudo-Anosov and Dehn twist components Si from S × {0} ⊂ S × R.

To do iteration in Schottky space, we let S be the boundary of a handlebodyH, we fix f : S −! S
and a point X ∈ T (S) in Teichmüller space, and we consider the sequence

Mn := Q(fn(X))

of convex-cocompact hyperbolic structures on H, where the conformal boundary of Mn is fn(X).

Theorem 5.3 (B-Lecuire, in preparation). One can describe all geometric limits of (Mn).

It takes a few pages in our paper to properly state our theorem, so I’ll omit the precise statement
here. However, here are some of the subtleties that come up. First, if f extends to a subcompression
body C ⊂ H, then the Nielsen-Thurston type of f is irrelevant to the behavior of (Mn); rather, what
matters is the Nielsen-Thurston type of the induced maps on the interior boundary components
of C. Also, there are some subtle issues that arise if two of the invariant subsurfaces of f , say Si
and Sj , bound an interval bundle in H, or if boundary components of Si and Sj bound an annulus
in H. At the end of the day, one gets that the geometric limits are obtained by deleting certain
surfaces from H, in analogy to Brock’s theorem, but it’s more complicated to describe exactly
what to delete, since what matters is not just the homeomorphism f , but how f interacts with the
structure of the handlebody H.

References Cited

[1] Miklos Abert, Nicolas Bergeron, Ian Biringer, and Tsachik Gelander. Convergence of nor-
malized betti numbers in nonpositive curvature. Duke Mathematical Journal, 172(4):633–700,
2023.

[2] Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolav, Jean Raim-
bault, and Iddo Samet. On the growth of lˆ2-invariants for sequences of lattices in lie groups.
Annals of Mathematics, 185(3):711–790, 2017.
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